纯边缘计算中鲁棒自适应工作负载编排

Zahra Safavifar, Charafeddine Mechalikh, F. Golpayegani
{"title":"纯边缘计算中鲁棒自适应工作负载编排","authors":"Zahra Safavifar, Charafeddine Mechalikh, F. Golpayegani","doi":"10.5220/0011782500003393","DOIUrl":null,"url":null,"abstract":"Pure Edge computing (PEC) aims to bring cloud applications and services to the edge of the network to support the growing user demand for time-sensitive applications and data-driven computing. However, mobility and limited computational capacity of edge devices pose challenges in supporting some urgent and computationally intensive tasks with strict response time demands. If the execution results of these tasks exceed the deadline, they become worthless and can cause severe safety issues. Therefore, it is essential to ensure that edge nodes complete as many latency-sensitive tasks as possible. \\\\In this paper, we propose a Robust Adaptive Workload Orchestration (R-AdWOrch) model to minimize deadline misses and data loss by using priority definition and a reallocation strategy. The results show that R-AdWOrch can minimize deadline misses of urgent tasks while minimizing the data loss of lower priority tasks under all conditions.","PeriodicalId":174978,"journal":{"name":"International Conference on Agents and Artificial Intelligence","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Adaptive Workload Orchestration in Pure Edge Computing\",\"authors\":\"Zahra Safavifar, Charafeddine Mechalikh, F. Golpayegani\",\"doi\":\"10.5220/0011782500003393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pure Edge computing (PEC) aims to bring cloud applications and services to the edge of the network to support the growing user demand for time-sensitive applications and data-driven computing. However, mobility and limited computational capacity of edge devices pose challenges in supporting some urgent and computationally intensive tasks with strict response time demands. If the execution results of these tasks exceed the deadline, they become worthless and can cause severe safety issues. Therefore, it is essential to ensure that edge nodes complete as many latency-sensitive tasks as possible. \\\\\\\\In this paper, we propose a Robust Adaptive Workload Orchestration (R-AdWOrch) model to minimize deadline misses and data loss by using priority definition and a reallocation strategy. The results show that R-AdWOrch can minimize deadline misses of urgent tasks while minimizing the data loss of lower priority tasks under all conditions.\",\"PeriodicalId\":174978,\"journal\":{\"name\":\"International Conference on Agents and Artificial Intelligence\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Agents and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0011782500003393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Agents and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011782500003393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纯边缘计算(PEC)旨在将云应用和服务带到网络边缘,以支持用户对时间敏感应用和数据驱动计算日益增长的需求。然而,边缘设备的移动性和有限的计算能力对支持一些具有严格响应时间要求的紧急和计算密集型任务提出了挑战。如果这些任务的执行结果超过了截止日期,它们将变得毫无价值,并可能导致严重的安全问题。因此,必须确保边缘节点完成尽可能多的对延迟敏感的任务。在本文中,我们提出了一个鲁棒自适应工作负载编排(R-AdWOrch)模型,通过使用优先级定义和重新分配策略来最小化截止日期错过和数据丢失。结果表明,R-AdWOrch在所有条件下都能最大限度地减少紧急任务的截止日期遗漏,同时最大限度地减少低优先级任务的数据丢失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Adaptive Workload Orchestration in Pure Edge Computing
Pure Edge computing (PEC) aims to bring cloud applications and services to the edge of the network to support the growing user demand for time-sensitive applications and data-driven computing. However, mobility and limited computational capacity of edge devices pose challenges in supporting some urgent and computationally intensive tasks with strict response time demands. If the execution results of these tasks exceed the deadline, they become worthless and can cause severe safety issues. Therefore, it is essential to ensure that edge nodes complete as many latency-sensitive tasks as possible. \\In this paper, we propose a Robust Adaptive Workload Orchestration (R-AdWOrch) model to minimize deadline misses and data loss by using priority definition and a reallocation strategy. The results show that R-AdWOrch can minimize deadline misses of urgent tasks while minimizing the data loss of lower priority tasks under all conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信