HMM语音识别算法编码

S. Jarng
{"title":"HMM语音识别算法编码","authors":"S. Jarng","doi":"10.1109/ICISA.2011.5772321","DOIUrl":null,"url":null,"abstract":"In this paper, the voice recognition algorithm based on HMM (Hidden Markov Modeling) is analyzed in detail. The HMM voice recognition algorithm is explained and the importance of voice information DB is revealed for better improvement of voice recognition rate. The feature vector of each voice characteristic parameter is chosen by means of MFCC (Mel Frequency Cepstral Coefficients). The extracting algorithm of syllable parts from continuous voice signal is introduced. This paper shows the relationship between recognition rates and number of applying syllables and number of groups for applying syllables.","PeriodicalId":425210,"journal":{"name":"2011 International Conference on Information Science and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"HMM Voice Recognition Algorithm Coding\",\"authors\":\"S. Jarng\",\"doi\":\"10.1109/ICISA.2011.5772321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the voice recognition algorithm based on HMM (Hidden Markov Modeling) is analyzed in detail. The HMM voice recognition algorithm is explained and the importance of voice information DB is revealed for better improvement of voice recognition rate. The feature vector of each voice characteristic parameter is chosen by means of MFCC (Mel Frequency Cepstral Coefficients). The extracting algorithm of syllable parts from continuous voice signal is introduced. This paper shows the relationship between recognition rates and number of applying syllables and number of groups for applying syllables.\",\"PeriodicalId\":425210,\"journal\":{\"name\":\"2011 International Conference on Information Science and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Information Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISA.2011.5772321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Information Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2011.5772321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文详细分析了基于隐马尔可夫模型的语音识别算法。阐述了HMM语音识别算法,揭示了语音信息DB对提高语音识别率的重要性。通过Mel频率倒谱系数(MFCC)选择每个语音特征参数的特征向量。介绍了从连续语音信号中提取音节部分的算法。本文给出了识别率与应用音节数和应用音节组数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HMM Voice Recognition Algorithm Coding
In this paper, the voice recognition algorithm based on HMM (Hidden Markov Modeling) is analyzed in detail. The HMM voice recognition algorithm is explained and the importance of voice information DB is revealed for better improvement of voice recognition rate. The feature vector of each voice characteristic parameter is chosen by means of MFCC (Mel Frequency Cepstral Coefficients). The extracting algorithm of syllable parts from continuous voice signal is introduced. This paper shows the relationship between recognition rates and number of applying syllables and number of groups for applying syllables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信