基于遗传算法的异步电动机状态可靠监测方法

Won-Chul Jang, Myeongsu Kang, Jaeyoung Kim, Jong-Myon Kim, Hung Nguyen Ngoc
{"title":"基于遗传算法的异步电动机状态可靠监测方法","authors":"Won-Chul Jang, Myeongsu Kang, Jaeyoung Kim, Jong-Myon Kim, Hung Nguyen Ngoc","doi":"10.1109/CIES.2014.7011828","DOIUrl":null,"url":null,"abstract":"Condition monitoring is a vital task in the maintenance of industry machines. This paper proposes a reliable condition monitoring method using a genetic algorithm (GA) which selects the most discriminate features by taking a transformation matrix. Experimental results show that the features selected by the GA outperforms original and randomly selected features using the same k-nearest neighbor (k-NN) classifier in terms of convergence rate, the number of features, and classification accuracy. The GA-based feature selection method improves the classification accuracy from 3% to 100% and from 30% to 100% over the original and randomly selected features, respectively.","PeriodicalId":287779,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reliable condition monitoring of an induction motor using a genetic algorithm based method\",\"authors\":\"Won-Chul Jang, Myeongsu Kang, Jaeyoung Kim, Jong-Myon Kim, Hung Nguyen Ngoc\",\"doi\":\"10.1109/CIES.2014.7011828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Condition monitoring is a vital task in the maintenance of industry machines. This paper proposes a reliable condition monitoring method using a genetic algorithm (GA) which selects the most discriminate features by taking a transformation matrix. Experimental results show that the features selected by the GA outperforms original and randomly selected features using the same k-nearest neighbor (k-NN) classifier in terms of convergence rate, the number of features, and classification accuracy. The GA-based feature selection method improves the classification accuracy from 3% to 100% and from 30% to 100% over the original and randomly selected features, respectively.\",\"PeriodicalId\":287779,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIES.2014.7011828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIES.2014.7011828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

状态监测是工业机械维修中的一项重要工作。本文提出了一种基于遗传算法的可靠状态监测方法,该方法通过变换矩阵选择最易判别的特征。实验结果表明,使用相同的k-最近邻(k-NN)分类器,GA选择的特征在收敛速度、特征数量和分类精度方面优于原始特征和随机选择的特征。基于遗传算法的特征选择方法,与原始特征和随机选择的特征相比,分类准确率分别从3%提高到100%和30%提高到100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliable condition monitoring of an induction motor using a genetic algorithm based method
Condition monitoring is a vital task in the maintenance of industry machines. This paper proposes a reliable condition monitoring method using a genetic algorithm (GA) which selects the most discriminate features by taking a transformation matrix. Experimental results show that the features selected by the GA outperforms original and randomly selected features using the same k-nearest neighbor (k-NN) classifier in terms of convergence rate, the number of features, and classification accuracy. The GA-based feature selection method improves the classification accuracy from 3% to 100% and from 30% to 100% over the original and randomly selected features, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信