{"title":"用电子束光刻和离子束蚀刻的燃烧反射光栅","authors":"D. Miles, R. McEntaffer, F. Grisé","doi":"10.1117/12.2637880","DOIUrl":null,"url":null,"abstract":"In modern X-ray-grating development for astronomical applications, electron-beam lithography has emerged as a primary fabrication approach to producing high-performance reflection gratings for both current and future missions. The work presented here leverages years of development in electron-beam lithography for X-ray gratings to produce a grating pattern that is then blazed with ion-beam etching. The directional ion-beam etching reshapes the groove facets to a consistent, triangular profile with a facet angle specified by the grating application. An initial prototype X-ray reflection grating fabricated with a combination of electron-beam lithography and ion-beam etching is presented here, along with diffraction efficiency performance measured across the soft-X-ray bandpass. This first prototype achieves ≈33% absolute diffraction efficiency from 0.2 to 1.2 keV, with an average peak-order efficiency of ≈17%. The fabrication approach, efficiency measurements, and path toward improved performance are presented.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"12181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blazed reflection gratings with electron-beam lithography and ion-beam etching\",\"authors\":\"D. Miles, R. McEntaffer, F. Grisé\",\"doi\":\"10.1117/12.2637880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern X-ray-grating development for astronomical applications, electron-beam lithography has emerged as a primary fabrication approach to producing high-performance reflection gratings for both current and future missions. The work presented here leverages years of development in electron-beam lithography for X-ray gratings to produce a grating pattern that is then blazed with ion-beam etching. The directional ion-beam etching reshapes the groove facets to a consistent, triangular profile with a facet angle specified by the grating application. An initial prototype X-ray reflection grating fabricated with a combination of electron-beam lithography and ion-beam etching is presented here, along with diffraction efficiency performance measured across the soft-X-ray bandpass. This first prototype achieves ≈33% absolute diffraction efficiency from 0.2 to 1.2 keV, with an average peak-order efficiency of ≈17%. The fabrication approach, efficiency measurements, and path toward improved performance are presented.\",\"PeriodicalId\":137463,\"journal\":{\"name\":\"Astronomical Telescopes + Instrumentation\",\"volume\":\"12181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomical Telescopes + Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2637880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomical Telescopes + Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2637880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blazed reflection gratings with electron-beam lithography and ion-beam etching
In modern X-ray-grating development for astronomical applications, electron-beam lithography has emerged as a primary fabrication approach to producing high-performance reflection gratings for both current and future missions. The work presented here leverages years of development in electron-beam lithography for X-ray gratings to produce a grating pattern that is then blazed with ion-beam etching. The directional ion-beam etching reshapes the groove facets to a consistent, triangular profile with a facet angle specified by the grating application. An initial prototype X-ray reflection grating fabricated with a combination of electron-beam lithography and ion-beam etching is presented here, along with diffraction efficiency performance measured across the soft-X-ray bandpass. This first prototype achieves ≈33% absolute diffraction efficiency from 0.2 to 1.2 keV, with an average peak-order efficiency of ≈17%. The fabrication approach, efficiency measurements, and path toward improved performance are presented.