基于ASN嵌入的IP劫持检测深度学习方法

T. Shapira, Y. Shavitt
{"title":"基于ASN嵌入的IP劫持检测深度学习方法","authors":"T. Shapira, Y. Shavitt","doi":"10.1145/3405671.3405814","DOIUrl":null,"url":null,"abstract":"IP hijack detection is an important security challenge. In this paper we introduce a novel approach for BGP hijack detection using deep learning. Similar to natural language processing (NLP) models, we show that by using BGP route announcements as sentences, we can embed each AS number (ASN) to a vector that represents its latent characteristics. In order to solve this supervised learning problem, we use these vectors as an input to a recurrent neural network and achieve an excellent result: an accuracy of 99.99% for BGP hijack detection with 0.00% false alarm. We test our method on 48 past hijack events between the years 2008 and 2018 and detect 32 of them, and in particular, all the events within two years from our training data.","PeriodicalId":254313,"journal":{"name":"Proceedings of the Workshop on Network Meets AI & ML","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Deep Learning Approach for IP Hijack Detection Based on ASN Embedding\",\"authors\":\"T. Shapira, Y. Shavitt\",\"doi\":\"10.1145/3405671.3405814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IP hijack detection is an important security challenge. In this paper we introduce a novel approach for BGP hijack detection using deep learning. Similar to natural language processing (NLP) models, we show that by using BGP route announcements as sentences, we can embed each AS number (ASN) to a vector that represents its latent characteristics. In order to solve this supervised learning problem, we use these vectors as an input to a recurrent neural network and achieve an excellent result: an accuracy of 99.99% for BGP hijack detection with 0.00% false alarm. We test our method on 48 past hijack events between the years 2008 and 2018 and detect 32 of them, and in particular, all the events within two years from our training data.\",\"PeriodicalId\":254313,\"journal\":{\"name\":\"Proceedings of the Workshop on Network Meets AI & ML\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Network Meets AI & ML\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3405671.3405814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Network Meets AI & ML","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3405671.3405814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

IP劫持检测是一个重要的安全挑战。本文介绍了一种基于深度学习的BGP劫持检测新方法。与自然语言处理(NLP)模型类似,我们表明,通过使用BGP路由公告作为句子,我们可以将每个as号(ASN)嵌入到表示其潜在特征的向量中。为了解决这个监督学习问题,我们使用这些向量作为递归神经网络的输入,并取得了很好的结果:BGP劫持检测的准确率为99.99%,假警报为0.00%。我们在2008年至2018年之间的48起劫机事件中测试了我们的方法,并检测了其中的32起,特别是从我们的训练数据中检测了两年内的所有事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning Approach for IP Hijack Detection Based on ASN Embedding
IP hijack detection is an important security challenge. In this paper we introduce a novel approach for BGP hijack detection using deep learning. Similar to natural language processing (NLP) models, we show that by using BGP route announcements as sentences, we can embed each AS number (ASN) to a vector that represents its latent characteristics. In order to solve this supervised learning problem, we use these vectors as an input to a recurrent neural network and achieve an excellent result: an accuracy of 99.99% for BGP hijack detection with 0.00% false alarm. We test our method on 48 past hijack events between the years 2008 and 2018 and detect 32 of them, and in particular, all the events within two years from our training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信