Gamma混合模型中基于消息传递的推理

Albert Podusenko, B. V. Erp, Dmitry V. Bagaev, Ismail Senöz, B. Vries
{"title":"Gamma混合模型中基于消息传递的推理","authors":"Albert Podusenko, B. V. Erp, Dmitry V. Bagaev, Ismail Senöz, B. Vries","doi":"10.1109/mlsp52302.2021.9596329","DOIUrl":null,"url":null,"abstract":"The Gamma mixture model is a flexible probability distribution for representing beliefs about scale variables such as precisions. Inference in the Gamma mixture model for all latent variables is non-trivial as it leads to intractable equations. This paper presents two variants of variational message passing-based inference in a Gamma mixture model. We use moment matching and alternatively expectation-maximization to approximate the posterior distributions. The proposed method supports automated inference in factor graphs for large probabilistic models that contain multiple Gamma mixture models as plug-in factors. The Gamma mixture model has been implemented in a factor graph package and we present experimental results for both synthetic and real-world data sets.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Message Passing-Based Inference in the Gamma Mixture Model\",\"authors\":\"Albert Podusenko, B. V. Erp, Dmitry V. Bagaev, Ismail Senöz, B. Vries\",\"doi\":\"10.1109/mlsp52302.2021.9596329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Gamma mixture model is a flexible probability distribution for representing beliefs about scale variables such as precisions. Inference in the Gamma mixture model for all latent variables is non-trivial as it leads to intractable equations. This paper presents two variants of variational message passing-based inference in a Gamma mixture model. We use moment matching and alternatively expectation-maximization to approximate the posterior distributions. The proposed method supports automated inference in factor graphs for large probabilistic models that contain multiple Gamma mixture models as plug-in factors. The Gamma mixture model has been implemented in a factor graph package and we present experimental results for both synthetic and real-world data sets.\",\"PeriodicalId\":156116,\"journal\":{\"name\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mlsp52302.2021.9596329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Gamma混合模型是一种灵活的概率分布,用于表示有关精度等尺度变量的信念。对所有潜在变量的伽玛混合模型的推断是非平凡的,因为它导致难以处理的方程。本文提出了伽玛混合模型中基于变分消息传递推理的两种变体。我们使用矩匹配和期望最大化来近似后验分布。该方法支持在包含多个Gamma混合模型作为插件因子的大概率模型的因子图中进行自动推理。Gamma混合模型已在因子图包中实现,我们给出了合成和真实数据集的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Message Passing-Based Inference in the Gamma Mixture Model
The Gamma mixture model is a flexible probability distribution for representing beliefs about scale variables such as precisions. Inference in the Gamma mixture model for all latent variables is non-trivial as it leads to intractable equations. This paper presents two variants of variational message passing-based inference in a Gamma mixture model. We use moment matching and alternatively expectation-maximization to approximate the posterior distributions. The proposed method supports automated inference in factor graphs for large probabilistic models that contain multiple Gamma mixture models as plug-in factors. The Gamma mixture model has been implemented in a factor graph package and we present experimental results for both synthetic and real-world data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信