使用可视化解码基于CNN的对象分类器

Abhishek Mukhopadhyay, Imon Mukherjee, P. Biswas
{"title":"使用可视化解码基于CNN的对象分类器","authors":"Abhishek Mukhopadhyay, Imon Mukherjee, P. Biswas","doi":"10.1145/3409251.3411721","DOIUrl":null,"url":null,"abstract":"This paper investigates how working of Convolutional Neural Network (CNN) can be explained through visualization in the context of machine perception of autonomous vehicles. We visualize what type of features are extracted in different convolution layers of CNN that helps to understand how CNN gradually increases spatial information in every layer. Thus, it concentrates on region of interests in every transformation. Visualizing heat map of activation helps us to understand how CNN classifies and localizes different objects in image. This study also helps us to reason behind low accuracy of a model helps to increase trust on object detection module.","PeriodicalId":373501,"journal":{"name":"12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Decoding CNN based Object Classifier Using Visualization\",\"authors\":\"Abhishek Mukhopadhyay, Imon Mukherjee, P. Biswas\",\"doi\":\"10.1145/3409251.3411721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates how working of Convolutional Neural Network (CNN) can be explained through visualization in the context of machine perception of autonomous vehicles. We visualize what type of features are extracted in different convolution layers of CNN that helps to understand how CNN gradually increases spatial information in every layer. Thus, it concentrates on region of interests in every transformation. Visualizing heat map of activation helps us to understand how CNN classifies and localizes different objects in image. This study also helps us to reason behind low accuracy of a model helps to increase trust on object detection module.\",\"PeriodicalId\":373501,\"journal\":{\"name\":\"12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3409251.3411721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409251.3411721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了卷积神经网络(CNN)如何在自动驾驶汽车机器感知的背景下通过可视化来解释其工作。我们可视化了在CNN的不同卷积层中提取了哪些类型的特征,这有助于理解CNN如何在每一层中逐渐增加空间信息。因此,它在每一次转型中都聚焦于利益区域。可视化激活热图有助于我们理解CNN如何对图像中不同的物体进行分类和定位。该研究也有助于我们解释模型低准确率背后的原因,有助于增加对目标检测模块的信任。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding CNN based Object Classifier Using Visualization
This paper investigates how working of Convolutional Neural Network (CNN) can be explained through visualization in the context of machine perception of autonomous vehicles. We visualize what type of features are extracted in different convolution layers of CNN that helps to understand how CNN gradually increases spatial information in every layer. Thus, it concentrates on region of interests in every transformation. Visualizing heat map of activation helps us to understand how CNN classifies and localizes different objects in image. This study also helps us to reason behind low accuracy of a model helps to increase trust on object detection module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信