无线网络及其他网络中的在线凸优化:反馈-性能权衡

E. Belmega, P. Mertikopoulos, Romain Negrel
{"title":"无线网络及其他网络中的在线凸优化:反馈-性能权衡","authors":"E. Belmega, P. Mertikopoulos, Romain Negrel","doi":"10.23919/WiOpt56218.2022.9930534","DOIUrl":null,"url":null,"abstract":"The high degree of variability present in current and emerging mobile wireless networks calls for mathematical tools and techniques that transcend classical (convex) optimization paradigms. The aim of this short survey paper is to provide a gentle introduction to online learning and optimization algorithms that are able to provably cope with this variability and provide policies that are asymptotically optimal in hindsight-a property known as no regret. The focal point of this survey will be to delineate the trade-off between the information available as feedback to the learner, and the achievable regret guarantees starting with the case of gradient-based (first-order) feedback, then moving on to value-based (zeroth-order) feedback, and, ultimately, pushing the envelope to the extreme case of a single bit of feedback. We illustrate our theoretical analysis with a series of practical wireless network examples that highlight the potential of this elegant toolbox.","PeriodicalId":228040,"journal":{"name":"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Online convex optimization in wireless networks and beyond: The feedback-performance trade-off\",\"authors\":\"E. Belmega, P. Mertikopoulos, Romain Negrel\",\"doi\":\"10.23919/WiOpt56218.2022.9930534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high degree of variability present in current and emerging mobile wireless networks calls for mathematical tools and techniques that transcend classical (convex) optimization paradigms. The aim of this short survey paper is to provide a gentle introduction to online learning and optimization algorithms that are able to provably cope with this variability and provide policies that are asymptotically optimal in hindsight-a property known as no regret. The focal point of this survey will be to delineate the trade-off between the information available as feedback to the learner, and the achievable regret guarantees starting with the case of gradient-based (first-order) feedback, then moving on to value-based (zeroth-order) feedback, and, ultimately, pushing the envelope to the extreme case of a single bit of feedback. We illustrate our theoretical analysis with a series of practical wireless network examples that highlight the potential of this elegant toolbox.\",\"PeriodicalId\":228040,\"journal\":{\"name\":\"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WiOpt56218.2022.9930534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WiOpt56218.2022.9930534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当前和新兴移动无线网络中存在的高度可变性需要超越经典(凸)优化范式的数学工具和技术。这篇简短的调查论文的目的是对在线学习和优化算法提供一个温和的介绍,这些算法能够被证明能够应对这种可变性,并提供事后渐近最优的策略——一种被称为“不后悔”的特性。本调查的重点将是描述作为反馈给学习者的可用信息与可实现的遗憾保证之间的权衡,从基于梯度的(一阶)反馈开始,然后转移到基于值的(零阶)反馈,并最终将极限推到单个反馈的极端情况。我们用一系列实际的无线网络示例来说明我们的理论分析,这些示例突出了这个优雅工具箱的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online convex optimization in wireless networks and beyond: The feedback-performance trade-off
The high degree of variability present in current and emerging mobile wireless networks calls for mathematical tools and techniques that transcend classical (convex) optimization paradigms. The aim of this short survey paper is to provide a gentle introduction to online learning and optimization algorithms that are able to provably cope with this variability and provide policies that are asymptotically optimal in hindsight-a property known as no regret. The focal point of this survey will be to delineate the trade-off between the information available as feedback to the learner, and the achievable regret guarantees starting with the case of gradient-based (first-order) feedback, then moving on to value-based (zeroth-order) feedback, and, ultimately, pushing the envelope to the extreme case of a single bit of feedback. We illustrate our theoretical analysis with a series of practical wireless network examples that highlight the potential of this elegant toolbox.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信