符号执行的类型和间隔感知数组约束求解

Ziqi Shuai, Zhenbang Chen, Yufeng Zhang, Jun Sun, Ji Wang
{"title":"符号执行的类型和间隔感知数组约束求解","authors":"Ziqi Shuai, Zhenbang Chen, Yufeng Zhang, Jun Sun, Ji Wang","doi":"10.1145/3460319.3464826","DOIUrl":null,"url":null,"abstract":"Array constraints are prevalent in analyzing a program with symbolic execution. Solving array constraints is challenging due to the complexity of the precise encoding for arrays. In this work, we propose to synergize symbolic execution and array constraint solving. Our method addresses the difficulties in solving array constraints with novel ideas. First, we propose a lightweight method for pre-checking the unsatisfiability of array constraints based on integer linear programming. Second, observing that encoding arrays at the byte-level introduces many redundant axioms that reduce the effectiveness of constraint solving, we propose type and interval aware axiom generation. Note that the type information of array variables is inferred by symbolic execution, whereas interval information is calculated through the above pre-checking step. We have implemented our methods based on KLEE and its underlying constraint solver STP and conducted large-scale experiments on 75 real-world programs. The experimental results show that our method effectively improves the efficiency of symbolic execution. Our method solves 182.56% more constraints and explores 277.56% more paths on average under the same time threshold.","PeriodicalId":188008,"journal":{"name":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Type and interval aware array constraint solving for symbolic execution\",\"authors\":\"Ziqi Shuai, Zhenbang Chen, Yufeng Zhang, Jun Sun, Ji Wang\",\"doi\":\"10.1145/3460319.3464826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Array constraints are prevalent in analyzing a program with symbolic execution. Solving array constraints is challenging due to the complexity of the precise encoding for arrays. In this work, we propose to synergize symbolic execution and array constraint solving. Our method addresses the difficulties in solving array constraints with novel ideas. First, we propose a lightweight method for pre-checking the unsatisfiability of array constraints based on integer linear programming. Second, observing that encoding arrays at the byte-level introduces many redundant axioms that reduce the effectiveness of constraint solving, we propose type and interval aware axiom generation. Note that the type information of array variables is inferred by symbolic execution, whereas interval information is calculated through the above pre-checking step. We have implemented our methods based on KLEE and its underlying constraint solver STP and conducted large-scale experiments on 75 real-world programs. The experimental results show that our method effectively improves the efficiency of symbolic execution. Our method solves 182.56% more constraints and explores 277.56% more paths on average under the same time threshold.\",\"PeriodicalId\":188008,\"journal\":{\"name\":\"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460319.3464826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460319.3464826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在分析具有符号执行的程序时,数组约束非常普遍。由于数组精确编码的复杂性,求解数组约束具有挑战性。在这项工作中,我们提出了符号执行和数组约束求解的协同。我们的方法以新颖的思想解决了求解阵列约束的困难。首先,提出了一种基于整数线性规划的阵列约束不满足性预检验的轻量级方法。其次,观察到字节级编码数组引入了许多冗余公理,降低了约束求解的有效性,我们提出了类型和间隔感知公理生成。注意,数组变量的类型信息是通过符号执行推断出来的,而间隔信息是通过上述预检查步骤计算出来的。我们基于KLEE及其底层约束求解器STP实现了我们的方法,并在75个真实世界的程序上进行了大规模实验。实验结果表明,该方法有效地提高了符号执行的效率。在相同的时间阈值下,我们的方法平均多解决了182.56%的约束,探索了277.56%的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Type and interval aware array constraint solving for symbolic execution
Array constraints are prevalent in analyzing a program with symbolic execution. Solving array constraints is challenging due to the complexity of the precise encoding for arrays. In this work, we propose to synergize symbolic execution and array constraint solving. Our method addresses the difficulties in solving array constraints with novel ideas. First, we propose a lightweight method for pre-checking the unsatisfiability of array constraints based on integer linear programming. Second, observing that encoding arrays at the byte-level introduces many redundant axioms that reduce the effectiveness of constraint solving, we propose type and interval aware axiom generation. Note that the type information of array variables is inferred by symbolic execution, whereas interval information is calculated through the above pre-checking step. We have implemented our methods based on KLEE and its underlying constraint solver STP and conducted large-scale experiments on 75 real-world programs. The experimental results show that our method effectively improves the efficiency of symbolic execution. Our method solves 182.56% more constraints and explores 277.56% more paths on average under the same time threshold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信