基于傅立叶卡尔曼滤波的卷积盲源分离

Sabita Langkam, A. K. Deb
{"title":"基于傅立叶卡尔曼滤波的卷积盲源分离","authors":"Sabita Langkam, A. K. Deb","doi":"10.1109/AMS.2017.27","DOIUrl":null,"url":null,"abstract":"In this paper a frequency domain approach isproposed for convolutive blind source separation (CBSS) ofsignals. The convolutive mixing model when reformulated asa stochastic state-space model and defined in the frequencydomain comes with unknown states and parameters. Thesolution to the problem calls for a dual estimation approachto be applied to recover the original signals. The dualestimation method employed in this paper uses state-spacefrequency domain Kalman filter running a pair of state andparameter filters simultaneously to estimate unknownparameters and states. The performance of the proposedmethod is shown by simulation results and comparisons havebeen made with previous methods.","PeriodicalId":219494,"journal":{"name":"2017 Asia Modelling Symposium (AMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutive Blind Source Separation Using Fourier Kalman Filtering\",\"authors\":\"Sabita Langkam, A. K. Deb\",\"doi\":\"10.1109/AMS.2017.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a frequency domain approach isproposed for convolutive blind source separation (CBSS) ofsignals. The convolutive mixing model when reformulated asa stochastic state-space model and defined in the frequencydomain comes with unknown states and parameters. Thesolution to the problem calls for a dual estimation approachto be applied to recover the original signals. The dualestimation method employed in this paper uses state-spacefrequency domain Kalman filter running a pair of state andparameter filters simultaneously to estimate unknownparameters and states. The performance of the proposedmethod is shown by simulation results and comparisons havebeen made with previous methods.\",\"PeriodicalId\":219494,\"journal\":{\"name\":\"2017 Asia Modelling Symposium (AMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Asia Modelling Symposium (AMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMS.2017.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia Modelling Symposium (AMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2017.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于信号卷积盲源分离(CBSS)的频域方法。将卷积混合模型重新表述为随机状态空间模型并在频域中定义时,其状态和参数都是未知的。该问题的解决需要采用对偶估计方法来恢复原始信号。本文采用的对偶估计方法是使用状态-空间-频域卡尔曼滤波器同时运行一对状态和参数滤波器来估计未知参数和状态。仿真结果表明了该方法的有效性,并与已有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutive Blind Source Separation Using Fourier Kalman Filtering
In this paper a frequency domain approach isproposed for convolutive blind source separation (CBSS) ofsignals. The convolutive mixing model when reformulated asa stochastic state-space model and defined in the frequencydomain comes with unknown states and parameters. Thesolution to the problem calls for a dual estimation approachto be applied to recover the original signals. The dualestimation method employed in this paper uses state-spacefrequency domain Kalman filter running a pair of state andparameter filters simultaneously to estimate unknownparameters and states. The performance of the proposedmethod is shown by simulation results and comparisons havebeen made with previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信