无线传感器网络中的主成分分析策略

Nisrine Ghadban, P. Honeine, C. Francis, F. Mourad, J. Farah
{"title":"无线传感器网络中的主成分分析策略","authors":"Nisrine Ghadban, P. Honeine, C. Francis, F. Mourad, J. Farah","doi":"10.1109/SAM.2014.6882383","DOIUrl":null,"url":null,"abstract":"This paper deals with the issue of monitoring physical phenomena using wireless sensor networks. It provides principal component analysis for the time series of sensors' measurements. Without the need to compute the sample covariance matrix, we derive several in-network strategies to estimate the principal axis, including noncooperative and diffusion strategies. The performance of the proposed strategies is illustrated in the issue of monitoring gas diffusion.","PeriodicalId":141678,"journal":{"name":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Strategies for principal component analysis in wireless sensor networks\",\"authors\":\"Nisrine Ghadban, P. Honeine, C. Francis, F. Mourad, J. Farah\",\"doi\":\"10.1109/SAM.2014.6882383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the issue of monitoring physical phenomena using wireless sensor networks. It provides principal component analysis for the time series of sensors' measurements. Without the need to compute the sample covariance matrix, we derive several in-network strategies to estimate the principal axis, including noncooperative and diffusion strategies. The performance of the proposed strategies is illustrated in the issue of monitoring gas diffusion.\",\"PeriodicalId\":141678,\"journal\":{\"name\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2014.6882383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2014.6882383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文讨论了利用无线传感器网络监测物理现象的问题。它为传感器测量的时间序列提供了主成分分析。在不需要计算样本协方差矩阵的情况下,我们推导了几种网络内估计主轴的策略,包括非合作策略和扩散策略。在监测气体扩散的问题上说明了所提出的策略的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategies for principal component analysis in wireless sensor networks
This paper deals with the issue of monitoring physical phenomena using wireless sensor networks. It provides principal component analysis for the time series of sensors' measurements. Without the need to compute the sample covariance matrix, we derive several in-network strategies to estimate the principal axis, including noncooperative and diffusion strategies. The performance of the proposed strategies is illustrated in the issue of monitoring gas diffusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信