用于图像处理加速的分布式可重构硬件

J. Dondo, Jesús Barba, Fernando Rincón Calle, Francisco Sánchez, D. Fuente, J. C. López
{"title":"用于图像处理加速的分布式可重构硬件","authors":"J. Dondo, Jesús Barba, Fernando Rincón Calle, Francisco Sánchez, D. Fuente, J. C. López","doi":"10.1109/3PGCIC.2011.42","DOIUrl":null,"url":null,"abstract":"Lately, the use of GPUs is dominant in the field of high performance computing systems for computer graphics. However, since there is \"not good for everything\" solution, GPUs have also some drawbacks that make them not the best choice in certain scenarios: poor performance per watt ratio, difficulty to rewrite code to explode the parallelism and synchronization issues between computing cores, for example. In this work, we present the R-GRID approach based on the grid computing paradigm, with the purpose of integrating heterogenous reconfigurable devices under the umbrella of the distributed object paradigm. With R-GRID the aim is to offer an easy way to non experience hardware developers for building image processing applications using a component model. Deployment, communication, resource sharing, data access and replication of the processing cores is handled in an automatic and transparent manner, so coarse grained parallelism can be exploited effortless in R-GRID, accelerating image processing operations.","PeriodicalId":251730,"journal":{"name":"2011 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed Reconfigurable Hardware for Image Processing Acceleration\",\"authors\":\"J. Dondo, Jesús Barba, Fernando Rincón Calle, Francisco Sánchez, D. Fuente, J. C. López\",\"doi\":\"10.1109/3PGCIC.2011.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lately, the use of GPUs is dominant in the field of high performance computing systems for computer graphics. However, since there is \\\"not good for everything\\\" solution, GPUs have also some drawbacks that make them not the best choice in certain scenarios: poor performance per watt ratio, difficulty to rewrite code to explode the parallelism and synchronization issues between computing cores, for example. In this work, we present the R-GRID approach based on the grid computing paradigm, with the purpose of integrating heterogenous reconfigurable devices under the umbrella of the distributed object paradigm. With R-GRID the aim is to offer an easy way to non experience hardware developers for building image processing applications using a component model. Deployment, communication, resource sharing, data access and replication of the processing cores is handled in an automatic and transparent manner, so coarse grained parallelism can be exploited effortless in R-GRID, accelerating image processing operations.\",\"PeriodicalId\":251730,\"journal\":{\"name\":\"2011 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3PGCIC.2011.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3PGCIC.2011.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,gpu的使用在计算机图形学高性能计算系统领域占据主导地位。然而,由于“不是对所有事情都好”的解决方案,gpu也有一些缺点,使它们在某些情况下不是最佳选择:例如,每瓦性能比差,难以重写代码以爆发计算核心之间的并行性和同步问题。在这项工作中,我们提出了基于网格计算范式的R-GRID方法,目的是在分布式对象范式的保护下集成异构可重构设备。使用R-GRID的目的是为没有经验的硬件开发人员提供一种使用组件模型构建图像处理应用程序的简单方法。处理核心的部署、通信、资源共享、数据访问和复制以自动和透明的方式处理,因此R-GRID可以毫不费力地利用粗粒度并行性,加速图像处理操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Reconfigurable Hardware for Image Processing Acceleration
Lately, the use of GPUs is dominant in the field of high performance computing systems for computer graphics. However, since there is "not good for everything" solution, GPUs have also some drawbacks that make them not the best choice in certain scenarios: poor performance per watt ratio, difficulty to rewrite code to explode the parallelism and synchronization issues between computing cores, for example. In this work, we present the R-GRID approach based on the grid computing paradigm, with the purpose of integrating heterogenous reconfigurable devices under the umbrella of the distributed object paradigm. With R-GRID the aim is to offer an easy way to non experience hardware developers for building image processing applications using a component model. Deployment, communication, resource sharing, data access and replication of the processing cores is handled in an automatic and transparent manner, so coarse grained parallelism can be exploited effortless in R-GRID, accelerating image processing operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信