椭圆参考轨道编队飞行的相对运动

H. Dwidar, A. Owis
{"title":"椭圆参考轨道编队飞行的相对运动","authors":"H. Dwidar, A. Owis","doi":"10.14569/IJARAI.2013.020613","DOIUrl":null,"url":null,"abstract":"In this paper we present the optimal control of the\nrelative motion of formation flying consisting of two spacecrafts.\nOne of the spacecraft is considered as the chief, orbiting the\nEarth on a Highly Elliptical Orbit(HEO), and the other ,orbiting\nthe chief, is considered as the deputy. The Keplerian relative\ndyanmics of the formation as well as the the second zonal\nhamonics of the Earth’s gravitational field (J2) are studied.\nTo study these perturbative effect the linearized true anomaly\nvarying Tschauner-Hempel equations are augmented to include\nthe effect of J2. We solve the nonlinear feedback optimal control\nof the relative motion using the state dependent Riccati Equation(\nSDRE). The results are validated through a nummerical\nexample.","PeriodicalId":323606,"journal":{"name":"International Journal of Advanced Research in Artificial Intelligence","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Relative Motion of Formation Flying with Elliptical Reference Orbit\",\"authors\":\"H. Dwidar, A. Owis\",\"doi\":\"10.14569/IJARAI.2013.020613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present the optimal control of the\\nrelative motion of formation flying consisting of two spacecrafts.\\nOne of the spacecraft is considered as the chief, orbiting the\\nEarth on a Highly Elliptical Orbit(HEO), and the other ,orbiting\\nthe chief, is considered as the deputy. The Keplerian relative\\ndyanmics of the formation as well as the the second zonal\\nhamonics of the Earth’s gravitational field (J2) are studied.\\nTo study these perturbative effect the linearized true anomaly\\nvarying Tschauner-Hempel equations are augmented to include\\nthe effect of J2. We solve the nonlinear feedback optimal control\\nof the relative motion using the state dependent Riccati Equation(\\nSDRE). The results are validated through a nummerical\\nexample.\",\"PeriodicalId\":323606,\"journal\":{\"name\":\"International Journal of Advanced Research in Artificial Intelligence\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/IJARAI.2013.020613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/IJARAI.2013.020613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了由两个航天器组成的编队飞行相对运动的最优控制问题。其中一个航天器被认为是主航天器,在高椭圆轨道(HEO)上绕地球运行,另一个绕主航天器运行,被认为是副航天器。研究了其形成的开普勒相对动力学和地球引力场的第二次带谐性。为了研究这些扰动效应,对线性化的真异常变Tschauner-Hempel方程进行扩充,使其包含J2的影响。利用状态依赖Riccati方程(SDRE)求解了相对运动的非线性反馈最优控制问题。通过数值算例验证了所得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative Motion of Formation Flying with Elliptical Reference Orbit
In this paper we present the optimal control of the relative motion of formation flying consisting of two spacecrafts. One of the spacecraft is considered as the chief, orbiting the Earth on a Highly Elliptical Orbit(HEO), and the other ,orbiting the chief, is considered as the deputy. The Keplerian relative dyanmics of the formation as well as the the second zonal hamonics of the Earth’s gravitational field (J2) are studied. To study these perturbative effect the linearized true anomaly varying Tschauner-Hempel equations are augmented to include the effect of J2. We solve the nonlinear feedback optimal control of the relative motion using the state dependent Riccati Equation( SDRE). The results are validated through a nummerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信