对流对扩展板上三维卡森旋转流体的影响:数值方法

A. Prathiba, A. Lakshimi
{"title":"对流对扩展板上三维卡森旋转流体的影响:数值方法","authors":"A. Prathiba, A. Lakshimi","doi":"10.4314/ejst.v15i3.7","DOIUrl":null,"url":null,"abstract":"Natural convection occurs in fluid environments. Usually, it is facilitated by the buoyancy effect. It is significantly less efficient than forced convection, due to the lack of fluid motion. As a result, it is completely dependent on the buoyancy effect's strength and the fluid's viscosity. The current work investigates the convective flow of a three-dimensional Casson fluid across a rotating linear expanding sheet. The nonlinear governing equations of the steady flow were presented and reconstructed using appropriate similarity transformations. To solve the resultant equations, the three-stage collocation approach namely Lobatto IIIA was applied using MATLAB. Graphs were used to illustrate the physical properties of the required data. It was observed that while the primary velocity profile decreases as the Casson, convective, and rotational parameters increase, the secondary velocity profile exhibits the opposite behaviour. The effect of rotation, Casson parameter, and others on drag coefficient, heat transfer coefficient, and mass transfer coefficient was evaluated, interpreted, and found to be reasonably consistent with earlier research.","PeriodicalId":151905,"journal":{"name":"Ethiopian Journal of Science and Technology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of convection on three dimensional Casson rotatory fluid over an extending sheet: A numerical approach\",\"authors\":\"A. Prathiba, A. Lakshimi\",\"doi\":\"10.4314/ejst.v15i3.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural convection occurs in fluid environments. Usually, it is facilitated by the buoyancy effect. It is significantly less efficient than forced convection, due to the lack of fluid motion. As a result, it is completely dependent on the buoyancy effect's strength and the fluid's viscosity. The current work investigates the convective flow of a three-dimensional Casson fluid across a rotating linear expanding sheet. The nonlinear governing equations of the steady flow were presented and reconstructed using appropriate similarity transformations. To solve the resultant equations, the three-stage collocation approach namely Lobatto IIIA was applied using MATLAB. Graphs were used to illustrate the physical properties of the required data. It was observed that while the primary velocity profile decreases as the Casson, convective, and rotational parameters increase, the secondary velocity profile exhibits the opposite behaviour. The effect of rotation, Casson parameter, and others on drag coefficient, heat transfer coefficient, and mass transfer coefficient was evaluated, interpreted, and found to be reasonably consistent with earlier research.\",\"PeriodicalId\":151905,\"journal\":{\"name\":\"Ethiopian Journal of Science and Technology\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ethiopian Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/ejst.v15i3.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ethiopian Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/ejst.v15i3.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自然对流发生在流体环境中。通常,它是由浮力效应促进的。由于缺乏流体运动,它的效率明显低于强制对流。因此,它完全取决于浮力效应的强度和流体的粘度。目前的工作研究了三维卡森流体在旋转线性膨胀片上的对流流动。建立了稳态流动的非线性控制方程,并利用适当的相似变换对其进行了重构。利用MATLAB软件,采用Lobatto IIIA三阶段配置法求解所得方程。使用图形来说明所需数据的物理属性。观察到,当卡森、对流和旋转参数增加时,初级速度剖面减小,而次级速度剖面表现出相反的行为。对旋转、卡森参数和其他参数对阻力系数、传热系数和传质系数的影响进行了评估和解释,并发现与早期的研究相当一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of convection on three dimensional Casson rotatory fluid over an extending sheet: A numerical approach
Natural convection occurs in fluid environments. Usually, it is facilitated by the buoyancy effect. It is significantly less efficient than forced convection, due to the lack of fluid motion. As a result, it is completely dependent on the buoyancy effect's strength and the fluid's viscosity. The current work investigates the convective flow of a three-dimensional Casson fluid across a rotating linear expanding sheet. The nonlinear governing equations of the steady flow were presented and reconstructed using appropriate similarity transformations. To solve the resultant equations, the three-stage collocation approach namely Lobatto IIIA was applied using MATLAB. Graphs were used to illustrate the physical properties of the required data. It was observed that while the primary velocity profile decreases as the Casson, convective, and rotational parameters increase, the secondary velocity profile exhibits the opposite behaviour. The effect of rotation, Casson parameter, and others on drag coefficient, heat transfer coefficient, and mass transfer coefficient was evaluated, interpreted, and found to be reasonably consistent with earlier research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信