使用语义嵌入的大图的监督类型

M. Kejriwal, Pedro A. Szekely
{"title":"使用语义嵌入的大图的监督类型","authors":"M. Kejriwal, Pedro A. Szekely","doi":"10.1145/3066911.3066918","DOIUrl":null,"url":null,"abstract":"We propose a supervised algorithm for generating type embeddings in the same semantic vector space as a given set of entity embeddings. The algorithm is agnostic to the derivation of the underlying entity embeddings. It does not require any manual feature engineering, generalizes well to hundreds of types and achieves near-linear scaling on Big Graphs containing many millions of triples and instances by virtue of an incremental execution. We demonstrate the utility of the embeddings on a type recommendation task, outperforming a non-parametric feature-agnostic baseline while achieving 15× speedup and near-constant memory usage on a full partition of DBpedia. Using state-of-the-art visualization, we illustrate the agreement of our extensionally derived DBpedia type embeddings with the manually curated domain ontology. Finally, we use the embeddings to probabilistically cluster about 4 million DBpedia instances into 415 types in the DBpedia ontology.","PeriodicalId":210506,"journal":{"name":"Proceedings of the International Workshop on Semantic Big Data","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Supervised typing of big graphs using semantic embeddings\",\"authors\":\"M. Kejriwal, Pedro A. Szekely\",\"doi\":\"10.1145/3066911.3066918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a supervised algorithm for generating type embeddings in the same semantic vector space as a given set of entity embeddings. The algorithm is agnostic to the derivation of the underlying entity embeddings. It does not require any manual feature engineering, generalizes well to hundreds of types and achieves near-linear scaling on Big Graphs containing many millions of triples and instances by virtue of an incremental execution. We demonstrate the utility of the embeddings on a type recommendation task, outperforming a non-parametric feature-agnostic baseline while achieving 15× speedup and near-constant memory usage on a full partition of DBpedia. Using state-of-the-art visualization, we illustrate the agreement of our extensionally derived DBpedia type embeddings with the manually curated domain ontology. Finally, we use the embeddings to probabilistically cluster about 4 million DBpedia instances into 415 types in the DBpedia ontology.\",\"PeriodicalId\":210506,\"journal\":{\"name\":\"Proceedings of the International Workshop on Semantic Big Data\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Workshop on Semantic Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3066911.3066918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Workshop on Semantic Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3066911.3066918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们提出了一种监督算法,用于在与给定实体嵌入集相同的语义向量空间中生成类型嵌入。该算法对底层实体嵌入的推导是不可知的。它不需要任何手动特征工程,可以很好地泛化到数百种类型,并通过增量执行在包含数百万个三元组和实例的大图上实现近线性缩放。我们演示了嵌入在类型推荐任务上的效用,在DBpedia的整个分区上实现了15倍的加速和近乎恒定的内存使用,同时优于非参数特征不确定基线。使用最先进的可视化技术,我们说明了扩展派生的DBpedia类型嵌入与手动策划的领域本体的一致性。最后,我们使用嵌入将大约400万个DBpedia实例概率地聚类到DBpedia本体中的415种类型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervised typing of big graphs using semantic embeddings
We propose a supervised algorithm for generating type embeddings in the same semantic vector space as a given set of entity embeddings. The algorithm is agnostic to the derivation of the underlying entity embeddings. It does not require any manual feature engineering, generalizes well to hundreds of types and achieves near-linear scaling on Big Graphs containing many millions of triples and instances by virtue of an incremental execution. We demonstrate the utility of the embeddings on a type recommendation task, outperforming a non-parametric feature-agnostic baseline while achieving 15× speedup and near-constant memory usage on a full partition of DBpedia. Using state-of-the-art visualization, we illustrate the agreement of our extensionally derived DBpedia type embeddings with the manually curated domain ontology. Finally, we use the embeddings to probabilistically cluster about 4 million DBpedia instances into 415 types in the DBpedia ontology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信