利用稀疏性的电容层析成像图像重建

Hongcheng Wang, I. Fedchenia, S. Shishkin, A. Finn, L. Smith, M. Colket
{"title":"利用稀疏性的电容层析成像图像重建","authors":"Hongcheng Wang, I. Fedchenia, S. Shishkin, A. Finn, L. Smith, M. Colket","doi":"10.1109/FIIW.2012.6378341","DOIUrl":null,"url":null,"abstract":"We present a new image reconstruction method for Electrical Capacitance Tomography (ECT) by exploiting the sparsity of reconstructed images. ECT image reconstruction is generally ill-posed because the number of measurements is small whereas the image dimensions are large. Inspired by recent developments in Compressive Sensing (CS), given the sparsity of the signal (image), our idea is to apply an efficient and stable algorithm through L1 regularization to recover the sparse signal with sufficient measurements that have cardinality comparable to the sparsity of the signal. In this paper, we apply an efficient GPSR (Gradient Projection for Sparse Reconstruction) algorithm to reconstruct the sparse signal under DCT basis (GPSR-DCT). Our results on real data show that the proposed GPSR-DCT algorithm can better preserve object boundary and shape, as compared to a representative state-of-the-art ECT image reconstruction algorithm, Projected Landweber Iteration with Linear Back Projection initialization (LBP-PLI).","PeriodicalId":170653,"journal":{"name":"2012 Future of Instrumentation International Workshop (FIIW) Proceedings","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Image reconstruction for electrical capacitance tomography exploiting sparsity\",\"authors\":\"Hongcheng Wang, I. Fedchenia, S. Shishkin, A. Finn, L. Smith, M. Colket\",\"doi\":\"10.1109/FIIW.2012.6378341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new image reconstruction method for Electrical Capacitance Tomography (ECT) by exploiting the sparsity of reconstructed images. ECT image reconstruction is generally ill-posed because the number of measurements is small whereas the image dimensions are large. Inspired by recent developments in Compressive Sensing (CS), given the sparsity of the signal (image), our idea is to apply an efficient and stable algorithm through L1 regularization to recover the sparse signal with sufficient measurements that have cardinality comparable to the sparsity of the signal. In this paper, we apply an efficient GPSR (Gradient Projection for Sparse Reconstruction) algorithm to reconstruct the sparse signal under DCT basis (GPSR-DCT). Our results on real data show that the proposed GPSR-DCT algorithm can better preserve object boundary and shape, as compared to a representative state-of-the-art ECT image reconstruction algorithm, Projected Landweber Iteration with Linear Back Projection initialization (LBP-PLI).\",\"PeriodicalId\":170653,\"journal\":{\"name\":\"2012 Future of Instrumentation International Workshop (FIIW) Proceedings\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Future of Instrumentation International Workshop (FIIW) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FIIW.2012.6378341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Future of Instrumentation International Workshop (FIIW) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIIW.2012.6378341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

利用重构图像的稀疏性,提出了一种新的电容层析成像(ECT)图像重构方法。由于测量次数少而图像尺寸大,ECT图像重建通常是病态的。受压缩感知(CS)最新发展的启发,考虑到信号(图像)的稀疏性,我们的想法是通过L1正则化应用一种高效且稳定的算法,通过具有与信号稀疏性相当的基数的足够测量值来恢复稀疏信号。本文采用一种高效的GPSR (Gradient Projection for Sparse Reconstruction)算法在DCT基础下对稀疏信号进行重构(GPSR-DCT)。实验结果表明,与目前最具代表性的ECT图像重建算法LBP-PLI(投影Landweber迭代与线性反向投影初始化)相比,本文提出的GPSR-DCT算法能更好地保留物体的边界和形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image reconstruction for electrical capacitance tomography exploiting sparsity
We present a new image reconstruction method for Electrical Capacitance Tomography (ECT) by exploiting the sparsity of reconstructed images. ECT image reconstruction is generally ill-posed because the number of measurements is small whereas the image dimensions are large. Inspired by recent developments in Compressive Sensing (CS), given the sparsity of the signal (image), our idea is to apply an efficient and stable algorithm through L1 regularization to recover the sparse signal with sufficient measurements that have cardinality comparable to the sparsity of the signal. In this paper, we apply an efficient GPSR (Gradient Projection for Sparse Reconstruction) algorithm to reconstruct the sparse signal under DCT basis (GPSR-DCT). Our results on real data show that the proposed GPSR-DCT algorithm can better preserve object boundary and shape, as compared to a representative state-of-the-art ECT image reconstruction algorithm, Projected Landweber Iteration with Linear Back Projection initialization (LBP-PLI).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信