通过架构级优化促进数据挖掘方法

Xin-Jing Ge, E. Ding, Hongxia Xie
{"title":"通过架构级优化促进数据挖掘方法","authors":"Xin-Jing Ge, E. Ding, Hongxia Xie","doi":"10.1109/WKDD.2009.52","DOIUrl":null,"url":null,"abstract":"This paper presents a new theoretical data mining framework that adapts the existing data mining systems with the architecture of the Knowledge Grid, the mechanism of the ontologies, and the factor of the human-driven knowledge. Aiming at much of the research to date focusing on the technique and algorithms, the new framework describes the essential factors from systemic and technical viewpoints respectively in order to balance the effect between the two aspects.","PeriodicalId":143250,"journal":{"name":"2009 Second International Workshop on Knowledge Discovery and Data Mining","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promoting Data Mining Methodologies by Architecture-Level Optimizations\",\"authors\":\"Xin-Jing Ge, E. Ding, Hongxia Xie\",\"doi\":\"10.1109/WKDD.2009.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new theoretical data mining framework that adapts the existing data mining systems with the architecture of the Knowledge Grid, the mechanism of the ontologies, and the factor of the human-driven knowledge. Aiming at much of the research to date focusing on the technique and algorithms, the new framework describes the essential factors from systemic and technical viewpoints respectively in order to balance the effect between the two aspects.\",\"PeriodicalId\":143250,\"journal\":{\"name\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WKDD.2009.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2009.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的理论数据挖掘框架,该框架采用知识网格的体系结构、本体的机制和人驱动的知识因素来适应现有的数据挖掘系统。针对目前大部分研究都集中在技术和算法上,新框架分别从系统和技术角度描述了关键因素,以平衡两者之间的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Promoting Data Mining Methodologies by Architecture-Level Optimizations
This paper presents a new theoretical data mining framework that adapts the existing data mining systems with the architecture of the Knowledge Grid, the mechanism of the ontologies, and the factor of the human-driven knowledge. Aiming at much of the research to date focusing on the technique and algorithms, the new framework describes the essential factors from systemic and technical viewpoints respectively in order to balance the effect between the two aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信