基于人工神经网络的耦合油箱系统强化学习控制算法设计与验证

Digant Rastogi, Manika Jain, M. M. Rayguru, S. K. Valluru
{"title":"基于人工神经网络的耦合油箱系统强化学习控制算法设计与验证","authors":"Digant Rastogi, Manika Jain, M. M. Rayguru, S. K. Valluru","doi":"10.1109/I2CT57861.2023.10126494","DOIUrl":null,"url":null,"abstract":"This paper presents a framework to apply Reinforcement Learning control algorithm on benchmark nonlinear dynamical systems. This work focuses on a novel Artificial Neural Network (ANN) based dynamic programming approach using Value Iteration to obtain optimal control for continuous-time nonlinear system. In particular, Coupled Tank System has been chosen to represent benchmark nonlinear dynamical system. The proposed Artificial Neural Network-Reinforcement Learning (ANN-RL) algorithm, Naive Reinforcement Learning (Naive-RL) algorithm and traditional PID control schemes are investigated on coupled tank system. The ANN-RL algorithm performs better than the Naive-RL and PID controllers in terms of steady state error, stability, oscillations and overshoot.","PeriodicalId":150346,"journal":{"name":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design & Validation of ANN based Reinforcement Learning Control Algorithm for Coupled Tank System\",\"authors\":\"Digant Rastogi, Manika Jain, M. M. Rayguru, S. K. Valluru\",\"doi\":\"10.1109/I2CT57861.2023.10126494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a framework to apply Reinforcement Learning control algorithm on benchmark nonlinear dynamical systems. This work focuses on a novel Artificial Neural Network (ANN) based dynamic programming approach using Value Iteration to obtain optimal control for continuous-time nonlinear system. In particular, Coupled Tank System has been chosen to represent benchmark nonlinear dynamical system. The proposed Artificial Neural Network-Reinforcement Learning (ANN-RL) algorithm, Naive Reinforcement Learning (Naive-RL) algorithm and traditional PID control schemes are investigated on coupled tank system. The ANN-RL algorithm performs better than the Naive-RL and PID controllers in terms of steady state error, stability, oscillations and overshoot.\",\"PeriodicalId\":150346,\"journal\":{\"name\":\"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2CT57861.2023.10126494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT57861.2023.10126494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个将强化学习控制算法应用于基准非线性动态系统的框架。本文研究了一种基于人工神经网络(ANN)的动态规划方法,利用值迭代法对连续时间非线性系统进行最优控制。特别地,选择耦合罐系统作为基准非线性动力系统。研究了人工神经网络强化学习(ANN-RL)算法、朴素强化学习(Naive- rl)算法和传统PID控制方案在耦合油箱系统中的应用。ANN-RL算法在稳态误差、稳定性、振荡和超调方面都优于Naive-RL和PID控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design & Validation of ANN based Reinforcement Learning Control Algorithm for Coupled Tank System
This paper presents a framework to apply Reinforcement Learning control algorithm on benchmark nonlinear dynamical systems. This work focuses on a novel Artificial Neural Network (ANN) based dynamic programming approach using Value Iteration to obtain optimal control for continuous-time nonlinear system. In particular, Coupled Tank System has been chosen to represent benchmark nonlinear dynamical system. The proposed Artificial Neural Network-Reinforcement Learning (ANN-RL) algorithm, Naive Reinforcement Learning (Naive-RL) algorithm and traditional PID control schemes are investigated on coupled tank system. The ANN-RL algorithm performs better than the Naive-RL and PID controllers in terms of steady state error, stability, oscillations and overshoot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信