自动总结语音邮件信息使用词汇和韵律的特点

K. Koumpis, S. Renals
{"title":"自动总结语音邮件信息使用词汇和韵律的特点","authors":"K. Koumpis, S. Renals","doi":"10.1145/1075389.1075390","DOIUrl":null,"url":null,"abstract":"This aticle presents trainable methods for extracting principal content words from voicemail messages. The short text summaries generated are suitable for mobile messaging applications. The system uses a set of classifiers to identify the summary words with each word described by a vector of lexical and prosodic features. We use an ROC-based algorithm, Parcel, to select input features (and classifiers). We have performed a series of objective and subjective evaluations using unseen data from two different speech recognition systems as well as human transcriptions of voicemail speech.","PeriodicalId":412532,"journal":{"name":"ACM Trans. Speech Lang. Process.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Automatic summarization of voicemail messages using lexical and prosodic features\",\"authors\":\"K. Koumpis, S. Renals\",\"doi\":\"10.1145/1075389.1075390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This aticle presents trainable methods for extracting principal content words from voicemail messages. The short text summaries generated are suitable for mobile messaging applications. The system uses a set of classifiers to identify the summary words with each word described by a vector of lexical and prosodic features. We use an ROC-based algorithm, Parcel, to select input features (and classifiers). We have performed a series of objective and subjective evaluations using unseen data from two different speech recognition systems as well as human transcriptions of voicemail speech.\",\"PeriodicalId\":412532,\"journal\":{\"name\":\"ACM Trans. Speech Lang. Process.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Speech Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1075389.1075390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Speech Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1075389.1075390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

本文提出了一种可训练的语音留言主要内容词提取方法。生成的简短文本摘要适用于移动消息传递应用程序。该系统使用一组分类器来识别总结词,每个词由词汇和韵律特征向量描述。我们使用基于roc的算法Parcel来选择输入特征(和分类器)。我们使用来自两种不同语音识别系统的未见数据以及语音邮件语音的人工转录进行了一系列客观和主观评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic summarization of voicemail messages using lexical and prosodic features
This aticle presents trainable methods for extracting principal content words from voicemail messages. The short text summaries generated are suitable for mobile messaging applications. The system uses a set of classifiers to identify the summary words with each word described by a vector of lexical and prosodic features. We use an ROC-based algorithm, Parcel, to select input features (and classifiers). We have performed a series of objective and subjective evaluations using unseen data from two different speech recognition systems as well as human transcriptions of voicemail speech.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信