基于分类和分割评分的识别方法

O. Kimball, Mari Ostendorf, J. R. Rohlicek
{"title":"基于分类和分割评分的识别方法","authors":"O. Kimball, Mari Ostendorf, J. R. Rohlicek","doi":"10.3115/1075527.1075570","DOIUrl":null,"url":null,"abstract":"Traditional statistical speech recognition systems typically make strong assumptions about the independence of observation frames and generally do not make use of segmental information. In contrast, when the segmentation is known, existing classifiers can readily accommodate segmental information in the decision process. We describe an approach to connected word recognition that allows the use of segmental information through an explicit decomposition of the recognition criterion into classification and segmentation scoring. Preliminary experiments are presented, demonstrating that the proposed framework, using fixed length sequences of cepstral feature vectors for classification of individual phonemes, performs comparably to more traditional recognition approaches that use the entire observation sequence. We expect that performance gain can be obtained using this structure with additional, more general features.","PeriodicalId":215441,"journal":{"name":"Proceedings of the workshop on Speech and Natural Language - HLT '91","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recognition Using Classification and Segmentation Scoring\",\"authors\":\"O. Kimball, Mari Ostendorf, J. R. Rohlicek\",\"doi\":\"10.3115/1075527.1075570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional statistical speech recognition systems typically make strong assumptions about the independence of observation frames and generally do not make use of segmental information. In contrast, when the segmentation is known, existing classifiers can readily accommodate segmental information in the decision process. We describe an approach to connected word recognition that allows the use of segmental information through an explicit decomposition of the recognition criterion into classification and segmentation scoring. Preliminary experiments are presented, demonstrating that the proposed framework, using fixed length sequences of cepstral feature vectors for classification of individual phonemes, performs comparably to more traditional recognition approaches that use the entire observation sequence. We expect that performance gain can be obtained using this structure with additional, more general features.\",\"PeriodicalId\":215441,\"journal\":{\"name\":\"Proceedings of the workshop on Speech and Natural Language - HLT '91\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the workshop on Speech and Natural Language - HLT '91\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1075527.1075570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the workshop on Speech and Natural Language - HLT '91","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1075527.1075570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

传统的统计语音识别系统通常对观察帧的独立性做出很强的假设,并且通常不使用分段信息。相反,当分割是已知的,现有的分类器可以很容易地适应在决策过程中的分割信息。我们描述了一种连接词识别的方法,该方法允许通过将识别标准明确分解为分类和分割评分来使用分段信息。初步实验表明,所提出的框架使用固定长度的倒谱特征向量序列对单个音素进行分类,与使用整个观察序列的传统识别方法相比,效果相当。我们期望使用这种结构和其他更通用的特性可以获得性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition Using Classification and Segmentation Scoring
Traditional statistical speech recognition systems typically make strong assumptions about the independence of observation frames and generally do not make use of segmental information. In contrast, when the segmentation is known, existing classifiers can readily accommodate segmental information in the decision process. We describe an approach to connected word recognition that allows the use of segmental information through an explicit decomposition of the recognition criterion into classification and segmentation scoring. Preliminary experiments are presented, demonstrating that the proposed framework, using fixed length sequences of cepstral feature vectors for classification of individual phonemes, performs comparably to more traditional recognition approaches that use the entire observation sequence. We expect that performance gain can be obtained using this structure with additional, more general features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信