大规模并行处理器上的大整数乘法

B. Fagin
{"title":"大规模并行处理器上的大整数乘法","authors":"B. Fagin","doi":"10.1109/FMPC.1990.89434","DOIUrl":null,"url":null,"abstract":"Results obtained by multiplying large integers using the Fermat number transform are presented. The effectiveness of the approach was previously limited by word-length constraints, which are not a factor with many new computer architectures. A convolution algorithm on a massively parallel processor, based on the Fermat number transform, is presented. Examples of the tradeoffs between modulus, interprocessor communication steps, and input size are given. The application of this algorithm in the multiplication of large integers is then discussed, and performance results on a Connection Machine are reported. The results show multiplication times ranging from about 50 ms for 2-kb integers to 2600 ms for 8-Mb integers.<<ETX>>","PeriodicalId":193332,"journal":{"name":"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Large integer multiplication on massively parallel processors\",\"authors\":\"B. Fagin\",\"doi\":\"10.1109/FMPC.1990.89434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results obtained by multiplying large integers using the Fermat number transform are presented. The effectiveness of the approach was previously limited by word-length constraints, which are not a factor with many new computer architectures. A convolution algorithm on a massively parallel processor, based on the Fermat number transform, is presented. Examples of the tradeoffs between modulus, interprocessor communication steps, and input size are given. The application of this algorithm in the multiplication of large integers is then discussed, and performance results on a Connection Machine are reported. The results show multiplication times ranging from about 50 ms for 2-kb integers to 2600 ms for 8-Mb integers.<<ETX>>\",\"PeriodicalId\":193332,\"journal\":{\"name\":\"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMPC.1990.89434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMPC.1990.89434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

给出了用费马数变换乘大整数的结果。该方法的有效性以前受到单词长度约束的限制,这在许多新的计算机体系结构中不再是一个因素。提出了一种基于费马数变换的大规模并行处理器卷积算法。给出了模数、处理器间通信步骤和输入大小之间权衡的例子。然后讨论了该算法在大整数乘法中的应用,并报告了在连接机上的性能结果。结果显示,乘法时间从2 kb整数的50 ms到8 mb整数的2600 ms不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large integer multiplication on massively parallel processors
Results obtained by multiplying large integers using the Fermat number transform are presented. The effectiveness of the approach was previously limited by word-length constraints, which are not a factor with many new computer architectures. A convolution algorithm on a massively parallel processor, based on the Fermat number transform, is presented. Examples of the tradeoffs between modulus, interprocessor communication steps, and input size are given. The application of this algorithm in the multiplication of large integers is then discussed, and performance results on a Connection Machine are reported. The results show multiplication times ranging from about 50 ms for 2-kb integers to 2600 ms for 8-Mb integers.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信