基于深度视觉感知递归神经网络的谣言检测语义信息挖掘

Feng Xing, Caili Guo
{"title":"基于深度视觉感知递归神经网络的谣言检测语义信息挖掘","authors":"Feng Xing, Caili Guo","doi":"10.1109/BigDataCongress.2019.00016","DOIUrl":null,"url":null,"abstract":"Rumor detection becomes a major issue concerning the public and government as the proliferation of social media in information dissemination. However, most existing methods only extract hand-crafted features, far from adequate in interpreting semantics latent in texts. For social events, there also exists rich social contextual information and highlevel interactions among significant features, which provides cues for interpreting semantics. In this paper, we propose a novel attention learning framework via deep visual perception based recurrent neural network (ViP-RNN), considering both high-level feature interactions and contextual information. In particular, the proposed model is based on RNN for capturing the long-distance temporal dependencies of contextual information of relevant posts and composing low-level lexical features into high-level semantic interactions hierarchically by visual perception of convolutional neural network (CNN). To incorporate information learned by RNN and CNN, we combine convolutional and recurrent layers into one model so that the model can capture a discriminative semantic representation of social events more efficiently by utilizing visual perception attention vector i.e. outputs of CNN to align long-distance temporal dependencies. We conduct experiments on real datasets collected from social media websites, which demonstrates the effectiveness of our approach and the merits of model integration.","PeriodicalId":335850,"journal":{"name":"2019 IEEE International Congress on Big Data (BigDataCongress)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mining Semantic Information in Rumor Detection via a Deep Visual Perception Based Recurrent Neural Networks\",\"authors\":\"Feng Xing, Caili Guo\",\"doi\":\"10.1109/BigDataCongress.2019.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rumor detection becomes a major issue concerning the public and government as the proliferation of social media in information dissemination. However, most existing methods only extract hand-crafted features, far from adequate in interpreting semantics latent in texts. For social events, there also exists rich social contextual information and highlevel interactions among significant features, which provides cues for interpreting semantics. In this paper, we propose a novel attention learning framework via deep visual perception based recurrent neural network (ViP-RNN), considering both high-level feature interactions and contextual information. In particular, the proposed model is based on RNN for capturing the long-distance temporal dependencies of contextual information of relevant posts and composing low-level lexical features into high-level semantic interactions hierarchically by visual perception of convolutional neural network (CNN). To incorporate information learned by RNN and CNN, we combine convolutional and recurrent layers into one model so that the model can capture a discriminative semantic representation of social events more efficiently by utilizing visual perception attention vector i.e. outputs of CNN to align long-distance temporal dependencies. We conduct experiments on real datasets collected from social media websites, which demonstrates the effectiveness of our approach and the merits of model integration.\",\"PeriodicalId\":335850,\"journal\":{\"name\":\"2019 IEEE International Congress on Big Data (BigDataCongress)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Congress on Big Data (BigDataCongress)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BigDataCongress.2019.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Congress on Big Data (BigDataCongress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2019.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

随着社交媒体在信息传播中的普及,谣言检测成为公众和政府关注的重大问题。然而,现有的方法大多只提取了手工制作的特征,远远不足以解释文本中潜在的语义。对于社会事件,也存在着丰富的社会语境信息和显著特征之间的高层次交互作用,为语义解释提供线索。在本文中,我们提出了一种基于深度视觉感知的递归神经网络(ViP-RNN)的注意力学习框架,该框架考虑了高级特征交互和上下文信息。特别是,该模型基于RNN,通过卷积神经网络(CNN)的视觉感知,捕获相关帖子上下文信息的远距离时间依赖关系,并将低级词汇特征分层构成高级语义交互。为了整合RNN和CNN学习到的信息,我们将卷积层和循环层结合到一个模型中,使该模型能够更有效地捕获社会事件的判别语义表示,利用视觉感知注意向量,即CNN的输出来对齐长距离时间依赖性。我们对从社交媒体网站收集的真实数据集进行了实验,证明了我们的方法的有效性和模型集成的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Semantic Information in Rumor Detection via a Deep Visual Perception Based Recurrent Neural Networks
Rumor detection becomes a major issue concerning the public and government as the proliferation of social media in information dissemination. However, most existing methods only extract hand-crafted features, far from adequate in interpreting semantics latent in texts. For social events, there also exists rich social contextual information and highlevel interactions among significant features, which provides cues for interpreting semantics. In this paper, we propose a novel attention learning framework via deep visual perception based recurrent neural network (ViP-RNN), considering both high-level feature interactions and contextual information. In particular, the proposed model is based on RNN for capturing the long-distance temporal dependencies of contextual information of relevant posts and composing low-level lexical features into high-level semantic interactions hierarchically by visual perception of convolutional neural network (CNN). To incorporate information learned by RNN and CNN, we combine convolutional and recurrent layers into one model so that the model can capture a discriminative semantic representation of social events more efficiently by utilizing visual perception attention vector i.e. outputs of CNN to align long-distance temporal dependencies. We conduct experiments on real datasets collected from social media websites, which demonstrates the effectiveness of our approach and the merits of model integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信