关于基于AI/ ml的扩展操作在5Growth平台的整合

J. Baranda, J. Mangues‐Bafalluy, E. Zeydan, L. Vettori, R. Martínez, Xi Li, Andres Garcia-Saavedra, C. Chiasserini, C. Casetti, Konstantin Tomakh, O. Kolodiazhnyi, C. Bernardos
{"title":"关于基于AI/ ml的扩展操作在5Growth平台的整合","authors":"J. Baranda, J. Mangues‐Bafalluy, E. Zeydan, L. Vettori, R. Martínez, Xi Li, Andres Garcia-Saavedra, C. Chiasserini, C. Casetti, Konstantin Tomakh, O. Kolodiazhnyi, C. Bernardos","doi":"10.1109/NFV-SDN50289.2020.9289863","DOIUrl":null,"url":null,"abstract":"The automated assurance of vertical service level agreements (SLA) is a challenge in 5G networks. The EU 5Growth project designs and develops a 5G End-to-End service platform that integrates Artificial Intelligence (AI) and Machine Learning (ML) techniques for any decision-making process in the management and orchestration (MANO) stack. This paper presents the detailed architecture and first prototype of the 5Growth platform taking AI/ML-based network service auto-scaling decisions. This also includes the modification of the ETSI network service descriptors for requesting AI/ML-based decisions for orchestration problems and the integration of a data engineering pipeline for real-time data gathering and model execution. Our evaluation shows that AI/ML-related service handling operations (1–2 s.) are well below instantiation/termination procedures (80/60 s., respectively). Furthermore, online classification can be performed in the order of hundreds of milliseconds (600 ms).","PeriodicalId":283280,"journal":{"name":"2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"122","resultStr":"{\"title\":\"On the Integration of AI/ML-based scaling operations in the 5Growth platform\",\"authors\":\"J. Baranda, J. Mangues‐Bafalluy, E. Zeydan, L. Vettori, R. Martínez, Xi Li, Andres Garcia-Saavedra, C. Chiasserini, C. Casetti, Konstantin Tomakh, O. Kolodiazhnyi, C. Bernardos\",\"doi\":\"10.1109/NFV-SDN50289.2020.9289863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automated assurance of vertical service level agreements (SLA) is a challenge in 5G networks. The EU 5Growth project designs and develops a 5G End-to-End service platform that integrates Artificial Intelligence (AI) and Machine Learning (ML) techniques for any decision-making process in the management and orchestration (MANO) stack. This paper presents the detailed architecture and first prototype of the 5Growth platform taking AI/ML-based network service auto-scaling decisions. This also includes the modification of the ETSI network service descriptors for requesting AI/ML-based decisions for orchestration problems and the integration of a data engineering pipeline for real-time data gathering and model execution. Our evaluation shows that AI/ML-related service handling operations (1–2 s.) are well below instantiation/termination procedures (80/60 s., respectively). Furthermore, online classification can be performed in the order of hundreds of milliseconds (600 ms).\",\"PeriodicalId\":283280,\"journal\":{\"name\":\"2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"122\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NFV-SDN50289.2020.9289863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NFV-SDN50289.2020.9289863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 122

摘要

垂直服务水平协议(SLA)的自动化保障是5G网络面临的挑战。EU 5Growth项目设计并开发了一个5G端到端服务平台,该平台集成了人工智能(AI)和机器学习(ML)技术,可用于管理和编排(MANO)堆栈中的任何决策过程。本文介绍了采用基于AI/ ml的网络服务自动扩展决策的5Growth平台的详细架构和第一个原型。这还包括对ETSI网络服务描述符的修改,用于请求基于AI/ ml的编排问题决策,以及集成用于实时数据收集和模型执行的数据工程管道。我们的评估表明,与AI/ ml相关的服务处理操作(1-2秒)远低于实例化/终止程序(分别为80/60秒)。此外,在线分类可以以数百毫秒(600毫秒)的顺序执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Integration of AI/ML-based scaling operations in the 5Growth platform
The automated assurance of vertical service level agreements (SLA) is a challenge in 5G networks. The EU 5Growth project designs and develops a 5G End-to-End service platform that integrates Artificial Intelligence (AI) and Machine Learning (ML) techniques for any decision-making process in the management and orchestration (MANO) stack. This paper presents the detailed architecture and first prototype of the 5Growth platform taking AI/ML-based network service auto-scaling decisions. This also includes the modification of the ETSI network service descriptors for requesting AI/ML-based decisions for orchestration problems and the integration of a data engineering pipeline for real-time data gathering and model execution. Our evaluation shows that AI/ML-related service handling operations (1–2 s.) are well below instantiation/termination procedures (80/60 s., respectively). Furthermore, online classification can be performed in the order of hundreds of milliseconds (600 ms).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信