{"title":"遍历三流形三角形和棘","authors":"J. Rubinstein, Henry Segerman, Stephan Tillmann","doi":"10.4171/lem/65-1/2-5","DOIUrl":null,"url":null,"abstract":"A celebrated result concerning triangulations of a given closed 3-manifold is that any two triangulations with the same number of vertices are connected by a sequence of so-called 2-3 and 3-2 moves. A similar result is known for ideal triangulations of topologically finite non-compact 3-manifolds. These results build on classical work that goes back to Alexander, Newman, Moise, and Pachner. The key special case of 1-vertex triangulations of closed 3-manifolds was independently proven by Matveev and Piergallini. The general result for closed 3-manifolds can be found in work of Benedetti and Petronio, and Amendola gives a proof for topologically finite non-compact 3-manifolds. These results (and their proofs) are phrased in the dual language of spines. \nThe purpose of this note is threefold. We wish to popularise Amendola's result; we give a combined proof for both closed and non-compact manifolds that emphasises the dual viewpoints of triangulations and spines; and we give a proof replacing a key general position argument due to Matveev with a more combinatorial argument inspired by the theory of subdivisions.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Traversing three-manifold triangulations and spines\",\"authors\":\"J. Rubinstein, Henry Segerman, Stephan Tillmann\",\"doi\":\"10.4171/lem/65-1/2-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A celebrated result concerning triangulations of a given closed 3-manifold is that any two triangulations with the same number of vertices are connected by a sequence of so-called 2-3 and 3-2 moves. A similar result is known for ideal triangulations of topologically finite non-compact 3-manifolds. These results build on classical work that goes back to Alexander, Newman, Moise, and Pachner. The key special case of 1-vertex triangulations of closed 3-manifolds was independently proven by Matveev and Piergallini. The general result for closed 3-manifolds can be found in work of Benedetti and Petronio, and Amendola gives a proof for topologically finite non-compact 3-manifolds. These results (and their proofs) are phrased in the dual language of spines. \\nThe purpose of this note is threefold. We wish to popularise Amendola's result; we give a combined proof for both closed and non-compact manifolds that emphasises the dual viewpoints of triangulations and spines; and we give a proof replacing a key general position argument due to Matveev with a more combinatorial argument inspired by the theory of subdivisions.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/65-1/2-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/65-1/2-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Traversing three-manifold triangulations and spines
A celebrated result concerning triangulations of a given closed 3-manifold is that any two triangulations with the same number of vertices are connected by a sequence of so-called 2-3 and 3-2 moves. A similar result is known for ideal triangulations of topologically finite non-compact 3-manifolds. These results build on classical work that goes back to Alexander, Newman, Moise, and Pachner. The key special case of 1-vertex triangulations of closed 3-manifolds was independently proven by Matveev and Piergallini. The general result for closed 3-manifolds can be found in work of Benedetti and Petronio, and Amendola gives a proof for topologically finite non-compact 3-manifolds. These results (and their proofs) are phrased in the dual language of spines.
The purpose of this note is threefold. We wish to popularise Amendola's result; we give a combined proof for both closed and non-compact manifolds that emphasises the dual viewpoints of triangulations and spines; and we give a proof replacing a key general position argument due to Matveev with a more combinatorial argument inspired by the theory of subdivisions.