使用摘要策略的自动文档分类

Rafael Ferreira, R. Lins, L. Cabral, F. Freitas, S. Simske, M. Riss
{"title":"使用摘要策略的自动文档分类","authors":"Rafael Ferreira, R. Lins, L. Cabral, F. Freitas, S. Simske, M. Riss","doi":"10.1145/2682571.2797077","DOIUrl":null,"url":null,"abstract":"An efficient way to automatically classify documents may be provided by automatic text summarization, the task of creating a shorter text from one or several documents. This paper presents an assessment of the 15 most widely used methods for automatic text summarization from the text classification perspective. A naive Bayes classifier was used showing that some of the methods tested are better suited for such a task.","PeriodicalId":106339,"journal":{"name":"Proceedings of the 2015 ACM Symposium on Document Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Document Classification using Summarization Strategies\",\"authors\":\"Rafael Ferreira, R. Lins, L. Cabral, F. Freitas, S. Simske, M. Riss\",\"doi\":\"10.1145/2682571.2797077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient way to automatically classify documents may be provided by automatic text summarization, the task of creating a shorter text from one or several documents. This paper presents an assessment of the 15 most widely used methods for automatic text summarization from the text classification perspective. A naive Bayes classifier was used showing that some of the methods tested are better suited for such a task.\",\"PeriodicalId\":106339,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Symposium on Document Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Symposium on Document Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2682571.2797077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2682571.2797077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自动文本摘要可以提供一种自动分类文档的有效方法,即从一个或多个文档中创建更短的文本。本文从文本分类的角度对15种应用最广泛的自动文本摘要方法进行了评价。使用朴素贝叶斯分类器表明,一些测试方法更适合这样的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Document Classification using Summarization Strategies
An efficient way to automatically classify documents may be provided by automatic text summarization, the task of creating a shorter text from one or several documents. This paper presents an assessment of the 15 most widely used methods for automatic text summarization from the text classification perspective. A naive Bayes classifier was used showing that some of the methods tested are better suited for such a task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信