基于最近邻插值和局部二值模式的人脸识别方法

Josky Aïzan, E. C. Ezin, C. Motamed
{"title":"基于最近邻插值和局部二值模式的人脸识别方法","authors":"Josky Aïzan, E. C. Ezin, C. Motamed","doi":"10.1109/SITIS.2016.21","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approachfor face recognition which consists of a dimensionalityreduction of face feature vectors. The image scaling is firstlyconducted on an input face image. Then we applied the LocalBinary Pattern (LBP) operator by dividing the face imageinto non-overlapped regions. LBP histograms are extractedfrom each region and concatenated into a single one thatrepresents the face image. Nearest neighbor classifier isused to perform recognition with Chi square function asa dissimilarity measure. Simulation experiments are doneusing the ORL (Olivetti Research Laboratory) databaseshowing the efficiency of the proposed approach with 97.5%as recognition rate.","PeriodicalId":403704,"journal":{"name":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Face Recognition Approach Based on Nearest Neighbor Interpolation and Local Binary Pattern\",\"authors\":\"Josky Aïzan, E. C. Ezin, C. Motamed\",\"doi\":\"10.1109/SITIS.2016.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel approachfor face recognition which consists of a dimensionalityreduction of face feature vectors. The image scaling is firstlyconducted on an input face image. Then we applied the LocalBinary Pattern (LBP) operator by dividing the face imageinto non-overlapped regions. LBP histograms are extractedfrom each region and concatenated into a single one thatrepresents the face image. Nearest neighbor classifier isused to perform recognition with Chi square function asa dissimilarity measure. Simulation experiments are doneusing the ORL (Olivetti Research Laboratory) databaseshowing the efficiency of the proposed approach with 97.5%as recognition rate.\",\"PeriodicalId\":403704,\"journal\":{\"name\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2016.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2016.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种新的人脸识别方法,该方法由人脸特征向量的降维组成。首先对输入的人脸图像进行图像缩放。然后应用局部二值模式(LBP)算子将人脸图像划分为不重叠的区域。从每个区域提取LBP直方图,并将其连接成一个代表人脸图像的直方图。采用最近邻分类器,以卡方函数作为不相似度度量进行识别。利用ORL (Olivetti研究实验室)数据库进行了仿真实验,结果表明该方法的识别率为97.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Face Recognition Approach Based on Nearest Neighbor Interpolation and Local Binary Pattern
In this paper, we present a novel approachfor face recognition which consists of a dimensionalityreduction of face feature vectors. The image scaling is firstlyconducted on an input face image. Then we applied the LocalBinary Pattern (LBP) operator by dividing the face imageinto non-overlapped regions. LBP histograms are extractedfrom each region and concatenated into a single one thatrepresents the face image. Nearest neighbor classifier isused to perform recognition with Chi square function asa dissimilarity measure. Simulation experiments are doneusing the ORL (Olivetti Research Laboratory) databaseshowing the efficiency of the proposed approach with 97.5%as recognition rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信