非高斯噪声存在下的参数估计

H. Salzwedel
{"title":"非高斯噪声存在下的参数估计","authors":"H. Salzwedel","doi":"10.1109/CDC.1980.271885","DOIUrl":null,"url":null,"abstract":"A method for parameter estimation is derived that is insensitive to the noise distribution, and an example of its use for nonlinear systems is given. The method combines the sensitivity of the maximum-likelihood parameter estimator with the robustness of order statistics to reduce estimation uncertainty significantly, with only a slight increase in the variance. This algorithm shows improvements over conventional parameter estimates, in particular, in the case of small data sets.","PeriodicalId":332964,"journal":{"name":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameter estimation in the presence of non-Gaussian noise\",\"authors\":\"H. Salzwedel\",\"doi\":\"10.1109/CDC.1980.271885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for parameter estimation is derived that is insensitive to the noise distribution, and an example of its use for nonlinear systems is given. The method combines the sensitivity of the maximum-likelihood parameter estimator with the robustness of order statistics to reduce estimation uncertainty significantly, with only a slight increase in the variance. This algorithm shows improvements over conventional parameter estimates, in particular, in the case of small data sets.\",\"PeriodicalId\":332964,\"journal\":{\"name\":\"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1980.271885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1980.271885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

推导了一种对噪声分布不敏感的参数估计方法,并给出了非线性系统参数估计的应用实例。该方法将最大似然参数估计量的敏感性与序统计量的鲁棒性相结合,在方差略有增加的情况下显著降低了估计的不确定性。该算法比传统的参数估计有了改进,特别是在小数据集的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter estimation in the presence of non-Gaussian noise
A method for parameter estimation is derived that is insensitive to the noise distribution, and an example of its use for nonlinear systems is given. The method combines the sensitivity of the maximum-likelihood parameter estimator with the robustness of order statistics to reduce estimation uncertainty significantly, with only a slight increase in the variance. This algorithm shows improvements over conventional parameter estimates, in particular, in the case of small data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信