基于静态特征的Android恶意软件检测机器学习方法评估

Ferdous Zeaul Islam, Ashfaq Jamil, S. Momen
{"title":"基于静态特征的Android恶意软件检测机器学习方法评估","authors":"Ferdous Zeaul Islam, Ashfaq Jamil, S. Momen","doi":"10.1109/IICAIET51634.2021.9573549","DOIUrl":null,"url":null,"abstract":"Popularity of android platform has made it a prime target for security threats. Third party app stores are getting flooded with malware apps. An effective way of detecting and therefore preventing the spread of malware is deemed necessary. In this paper we apply and evaluate machine learning approaches using static features to detect presence of malware in Android OS. We applied correlation based feature selection techniques and trained each classifier on the train set by hyperparameter tuning with stratified 10-fold cross validation and evaluated their performance on the unseen test set. Our experimental results reveal that it is possible to detect android malware with high reliability.","PeriodicalId":234229,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of Machine Learning Methods for Android Malware Detection using Static Features\",\"authors\":\"Ferdous Zeaul Islam, Ashfaq Jamil, S. Momen\",\"doi\":\"10.1109/IICAIET51634.2021.9573549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Popularity of android platform has made it a prime target for security threats. Third party app stores are getting flooded with malware apps. An effective way of detecting and therefore preventing the spread of malware is deemed necessary. In this paper we apply and evaluate machine learning approaches using static features to detect presence of malware in Android OS. We applied correlation based feature selection techniques and trained each classifier on the train set by hyperparameter tuning with stratified 10-fold cross validation and evaluated their performance on the unseen test set. Our experimental results reveal that it is possible to detect android malware with high reliability.\",\"PeriodicalId\":234229,\"journal\":{\"name\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICAIET51634.2021.9573549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET51634.2021.9573549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

android平台的普及使其成为安全威胁的主要目标。第三方应用商店充斥着恶意软件。一种有效的检测和防止恶意软件传播的方法被认为是必要的。在本文中,我们应用和评估使用静态特征的机器学习方法来检测Android操作系统中恶意软件的存在。我们应用了基于相关性的特征选择技术,并通过分层10倍交叉验证的超参数调优训练了训练集上的每个分类器,并评估了它们在未见测试集上的性能。实验结果表明,该方法可以检测出高可靠性的android恶意软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Machine Learning Methods for Android Malware Detection using Static Features
Popularity of android platform has made it a prime target for security threats. Third party app stores are getting flooded with malware apps. An effective way of detecting and therefore preventing the spread of malware is deemed necessary. In this paper we apply and evaluate machine learning approaches using static features to detect presence of malware in Android OS. We applied correlation based feature selection techniques and trained each classifier on the train set by hyperparameter tuning with stratified 10-fold cross validation and evaluated their performance on the unseen test set. Our experimental results reveal that it is possible to detect android malware with high reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信