基于神经网络分类器分水岭分割的脑肿瘤分类

F. Chowdhury, Tania Noor, Md. Saiful Islam, Md Khorshed Alam
{"title":"基于神经网络分类器分水岭分割的脑肿瘤分类","authors":"F. Chowdhury, Tania Noor, Md. Saiful Islam, Md Khorshed Alam","doi":"10.1109/ECCE57851.2023.10101528","DOIUrl":null,"url":null,"abstract":"A brain tumor is an uncommon form of body cell proliferation. The most difficult tasks in the medical profession are to identify and categorize brain tumors. A person's life may be at risk if the brain tumor is not immediately identified or diagnosed. In this proposed method, an artificial neural network (ANN)-based technique can classify brain tumors accurately. Firstly, the images are normalized using the scaling process. Then the normalized images are segmented using the watershed algorithm. After that, the seven statistical features are extracted and then applied as input to the ANN classifier for the classification of the brain tumors. The experimental result of the proposed method provides an accuracy result of 95.8% which is better than modern state-of-the-art methods. Furthermore, compared to other contemporary techniques, the chosen seven statistical features are comparably few in illustrating this performance.","PeriodicalId":131537,"journal":{"name":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain Tumor Classification Using Watershed Segmentation with ANN Classifier\",\"authors\":\"F. Chowdhury, Tania Noor, Md. Saiful Islam, Md Khorshed Alam\",\"doi\":\"10.1109/ECCE57851.2023.10101528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A brain tumor is an uncommon form of body cell proliferation. The most difficult tasks in the medical profession are to identify and categorize brain tumors. A person's life may be at risk if the brain tumor is not immediately identified or diagnosed. In this proposed method, an artificial neural network (ANN)-based technique can classify brain tumors accurately. Firstly, the images are normalized using the scaling process. Then the normalized images are segmented using the watershed algorithm. After that, the seven statistical features are extracted and then applied as input to the ANN classifier for the classification of the brain tumors. The experimental result of the proposed method provides an accuracy result of 95.8% which is better than modern state-of-the-art methods. Furthermore, compared to other contemporary techniques, the chosen seven statistical features are comparably few in illustrating this performance.\",\"PeriodicalId\":131537,\"journal\":{\"name\":\"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE57851.2023.10101528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE57851.2023.10101528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑肿瘤是一种罕见的身体细胞增生。医学界最困难的任务是识别和分类脑肿瘤。如果脑肿瘤不能立即被发现或诊断,病人的生命可能会受到威胁。在该方法中,基于人工神经网络(ANN)的技术可以准确地对脑肿瘤进行分类。首先,对图像进行归一化处理。然后利用分水岭算法对归一化后的图像进行分割。然后,提取这7个统计特征作为输入输入到ANN分类器中,对脑肿瘤进行分类。实验结果表明,该方法的精度为95.8%,优于现有方法。此外,与其他当代技术相比,所选择的七个统计特征在说明这种性能方面相对较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain Tumor Classification Using Watershed Segmentation with ANN Classifier
A brain tumor is an uncommon form of body cell proliferation. The most difficult tasks in the medical profession are to identify and categorize brain tumors. A person's life may be at risk if the brain tumor is not immediately identified or diagnosed. In this proposed method, an artificial neural network (ANN)-based technique can classify brain tumors accurately. Firstly, the images are normalized using the scaling process. Then the normalized images are segmented using the watershed algorithm. After that, the seven statistical features are extracted and then applied as input to the ANN classifier for the classification of the brain tumors. The experimental result of the proposed method provides an accuracy result of 95.8% which is better than modern state-of-the-art methods. Furthermore, compared to other contemporary techniques, the chosen seven statistical features are comparably few in illustrating this performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信