概率神经网络的进化计算方法及其在肝癌诊断中的应用

F. Gorunescu, Marina Gorunescu, E. El-Darzi, S. Gorunescu
{"title":"概率神经网络的进化计算方法及其在肝癌诊断中的应用","authors":"F. Gorunescu, Marina Gorunescu, E. El-Darzi, S. Gorunescu","doi":"10.1109/CBMS.2005.24","DOIUrl":null,"url":null,"abstract":"The performance of a probabilistic neural network is strongly influenced by the smoothing parameter. This paper introduces an evolutionary approach based on genetic algorithm to optimise the search of the smoothing parameter in a modified probabilistic neural network. A Java implementation is introduced and the computational results showed the viability of this hybrid approach to determine the optimum diagnosis for hepatic diseases.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An evolutionary computational approach to probabilistic neural network with application to hepatic cancer diagnosis\",\"authors\":\"F. Gorunescu, Marina Gorunescu, E. El-Darzi, S. Gorunescu\",\"doi\":\"10.1109/CBMS.2005.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of a probabilistic neural network is strongly influenced by the smoothing parameter. This paper introduces an evolutionary approach based on genetic algorithm to optimise the search of the smoothing parameter in a modified probabilistic neural network. A Java implementation is introduced and the computational results showed the viability of this hybrid approach to determine the optimum diagnosis for hepatic diseases.\",\"PeriodicalId\":119367,\"journal\":{\"name\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2005.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

概率神经网络的性能受平滑参数的影响很大。本文介绍了一种基于遗传算法的进化方法来优化改进概率神经网络中平滑参数的搜索。介绍了一个Java实现,计算结果表明,这种混合方法在确定肝脏疾病的最佳诊断方面是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An evolutionary computational approach to probabilistic neural network with application to hepatic cancer diagnosis
The performance of a probabilistic neural network is strongly influenced by the smoothing parameter. This paper introduces an evolutionary approach based on genetic algorithm to optimise the search of the smoothing parameter in a modified probabilistic neural network. A Java implementation is introduced and the computational results showed the viability of this hybrid approach to determine the optimum diagnosis for hepatic diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信