{"title":"基于MSQ网络循环报文中继的可恢复DTN路由","authors":"Y. Hayashi","doi":"10.1109/SASOW.2015.11","DOIUrl":null,"url":null,"abstract":"An interrelation between a topological design of network and efficient algorithm on it is important for communication or transportation systems. In this paper, we propose a design principle for a reliable routing in a store-carry-forward manner based on autonomously moving message-ferries on a special structure of fractal-like network, which consists of a self-similar tiling of equilateral triangles. As a collective adaptive mechanism, the routing is realized by a relay of cyclic message-ferries corresponded to a concatenation of the triangle faces and using some good properties of the network structure. It is recoverable for local accidents in the hierarchical network structure. Moreover, the design principle is theoretically supported with a calculation method for the optimal service rates of message-ferries derived from a tandem queue model for stochastic processes on a chain of edges in the network. These results obtained from a combination of complex network science and computer science will be useful for developing a resilient network system.","PeriodicalId":384469,"journal":{"name":"2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recoverable DTN Routing Based on a Relay of Cyclic Message-Ferries on a MSQ Network\",\"authors\":\"Y. Hayashi\",\"doi\":\"10.1109/SASOW.2015.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An interrelation between a topological design of network and efficient algorithm on it is important for communication or transportation systems. In this paper, we propose a design principle for a reliable routing in a store-carry-forward manner based on autonomously moving message-ferries on a special structure of fractal-like network, which consists of a self-similar tiling of equilateral triangles. As a collective adaptive mechanism, the routing is realized by a relay of cyclic message-ferries corresponded to a concatenation of the triangle faces and using some good properties of the network structure. It is recoverable for local accidents in the hierarchical network structure. Moreover, the design principle is theoretically supported with a calculation method for the optimal service rates of message-ferries derived from a tandem queue model for stochastic processes on a chain of edges in the network. These results obtained from a combination of complex network science and computer science will be useful for developing a resilient network system.\",\"PeriodicalId\":384469,\"journal\":{\"name\":\"2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASOW.2015.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASOW.2015.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recoverable DTN Routing Based on a Relay of Cyclic Message-Ferries on a MSQ Network
An interrelation between a topological design of network and efficient algorithm on it is important for communication or transportation systems. In this paper, we propose a design principle for a reliable routing in a store-carry-forward manner based on autonomously moving message-ferries on a special structure of fractal-like network, which consists of a self-similar tiling of equilateral triangles. As a collective adaptive mechanism, the routing is realized by a relay of cyclic message-ferries corresponded to a concatenation of the triangle faces and using some good properties of the network structure. It is recoverable for local accidents in the hierarchical network structure. Moreover, the design principle is theoretically supported with a calculation method for the optimal service rates of message-ferries derived from a tandem queue model for stochastic processes on a chain of edges in the network. These results obtained from a combination of complex network science and computer science will be useful for developing a resilient network system.