{"title":"聚碳酸酯开关外壳故障","authors":"","doi":"10.31399/asm.fach.modes.c0090463","DOIUrl":null,"url":null,"abstract":"\n A housing used in conjunction with an electrical switch failed shortly after being placed into service. A relatively high failure rate had been encountered, corresponding to a recent production lot of the housings, and the failed part was representative of the problem. The housing had been injection molded from a commercially available, medium-viscosity grade of PC, formulated with an ultraviolet stabilizer. In addition to the PC housing, the design of the switch included an external protective zinc component installed with a snap-fit and two retained copper press-fit contact inserts. Investigation supported the conclusion that the switch housings failed via brittle fracture, likely through a creep mechanism. The failure was caused by severe embrittlement of the housing resin associated with massive molecular degradation produced during the molding process. A potential contributing factor was the design of the part, which produced significant interference stresses between the contact and a mating retaining tab.","PeriodicalId":231268,"journal":{"name":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure of a Polycarbonate Switch Housing\",\"authors\":\"\",\"doi\":\"10.31399/asm.fach.modes.c0090463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A housing used in conjunction with an electrical switch failed shortly after being placed into service. A relatively high failure rate had been encountered, corresponding to a recent production lot of the housings, and the failed part was representative of the problem. The housing had been injection molded from a commercially available, medium-viscosity grade of PC, formulated with an ultraviolet stabilizer. In addition to the PC housing, the design of the switch included an external protective zinc component installed with a snap-fit and two retained copper press-fit contact inserts. Investigation supported the conclusion that the switch housings failed via brittle fracture, likely through a creep mechanism. The failure was caused by severe embrittlement of the housing resin associated with massive molecular degradation produced during the molding process. A potential contributing factor was the design of the part, which produced significant interference stresses between the contact and a mating retaining tab.\",\"PeriodicalId\":231268,\"journal\":{\"name\":\"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.fach.modes.c0090463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.modes.c0090463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A housing used in conjunction with an electrical switch failed shortly after being placed into service. A relatively high failure rate had been encountered, corresponding to a recent production lot of the housings, and the failed part was representative of the problem. The housing had been injection molded from a commercially available, medium-viscosity grade of PC, formulated with an ultraviolet stabilizer. In addition to the PC housing, the design of the switch included an external protective zinc component installed with a snap-fit and two retained copper press-fit contact inserts. Investigation supported the conclusion that the switch housings failed via brittle fracture, likely through a creep mechanism. The failure was caused by severe embrittlement of the housing resin associated with massive molecular degradation produced during the molding process. A potential contributing factor was the design of the part, which produced significant interference stresses between the contact and a mating retaining tab.