面向神经形态智能脑机接口:一种基于事件的神经记录与处理系统

Federico Corradi, D. Bontrager, G. Indiveri
{"title":"面向神经形态智能脑机接口:一种基于事件的神经记录与处理系统","authors":"Federico Corradi, D. Bontrager, G. Indiveri","doi":"10.1109/BioCAS.2014.6981793","DOIUrl":null,"url":null,"abstract":"We present an analog neural recording front-end design that can be easily interfaced with Address-Event Representation (AER) neuromorphic systems via an asynchronous digital communication channel. The proposed circuits include a low-noise amplifier for biological signals, a delta-modulator analog-to-digital converter, and a low-power bandpass filter. The bio-amplifier has a gain of 54 dB, with an Root Mean Squared (RMS) input-referred noise level of 2.1 μV, and consumes 90 μW. The bandpass filter and delta-modulator circuits include asynchronous handshaking interface logic compatible with the AER communication protocol. We describe the circuits, present experimental measurements to demonstrate their response properties and show how they can be used in conjunction with neuromorphic computing architectures to implement decoding and learning functions useful for Brain-Machince Interfaces (BMIs).","PeriodicalId":414575,"journal":{"name":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Toward neuromorphic intelligent brain-machine interfaces: An event-based neural recording and processing system\",\"authors\":\"Federico Corradi, D. Bontrager, G. Indiveri\",\"doi\":\"10.1109/BioCAS.2014.6981793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an analog neural recording front-end design that can be easily interfaced with Address-Event Representation (AER) neuromorphic systems via an asynchronous digital communication channel. The proposed circuits include a low-noise amplifier for biological signals, a delta-modulator analog-to-digital converter, and a low-power bandpass filter. The bio-amplifier has a gain of 54 dB, with an Root Mean Squared (RMS) input-referred noise level of 2.1 μV, and consumes 90 μW. The bandpass filter and delta-modulator circuits include asynchronous handshaking interface logic compatible with the AER communication protocol. We describe the circuits, present experimental measurements to demonstrate their response properties and show how they can be used in conjunction with neuromorphic computing architectures to implement decoding and learning functions useful for Brain-Machince Interfaces (BMIs).\",\"PeriodicalId\":414575,\"journal\":{\"name\":\"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS.2014.6981793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2014.6981793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了一种模拟神经记录前端设计,可以通过异步数字通信通道轻松地与地址-事件表示(AER)神经形态系统接口。所提出的电路包括一个用于生物信号的低噪声放大器、一个增量调制器模数转换器和一个低功率带通滤波器。该生物放大器增益为54 dB,输入参考噪声均方根(RMS)为2.1 μV,功耗为90 μW。带通滤波器和增量调制器电路包括与AER通信协议兼容的异步握手接口逻辑。我们描述了这些电路,提出了实验测量来证明它们的响应特性,并展示了它们如何与神经形态计算架构结合使用,以实现对脑机接口(bmi)有用的解码和学习功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward neuromorphic intelligent brain-machine interfaces: An event-based neural recording and processing system
We present an analog neural recording front-end design that can be easily interfaced with Address-Event Representation (AER) neuromorphic systems via an asynchronous digital communication channel. The proposed circuits include a low-noise amplifier for biological signals, a delta-modulator analog-to-digital converter, and a low-power bandpass filter. The bio-amplifier has a gain of 54 dB, with an Root Mean Squared (RMS) input-referred noise level of 2.1 μV, and consumes 90 μW. The bandpass filter and delta-modulator circuits include asynchronous handshaking interface logic compatible with the AER communication protocol. We describe the circuits, present experimental measurements to demonstrate their response properties and show how they can be used in conjunction with neuromorphic computing architectures to implement decoding and learning functions useful for Brain-Machince Interfaces (BMIs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信