45纳米以下CMOS器件的电特性波动

Fu-Liang Yang, Jiunn-Ren Hwang, Yiming Li
{"title":"45纳米以下CMOS器件的电特性波动","authors":"Fu-Liang Yang, Jiunn-Ren Hwang, Yiming Li","doi":"10.1109/CICC.2006.320881","DOIUrl":null,"url":null,"abstract":"Random fluctuations of electrical characteristics in sub-45nm CMOS devices introduced by process-parameter variations through severe short channel effects have made the scaling of conventional planar transistors much more difficult than ever before, especially while further reduction of gate dielectric thickness is ambiguous. In this paper, the authors systematically investigate the fluctuations of threshold voltages at varied gate length, considering the effects of channel doping, gate dielectric thickness, and new transistor structures such as thin-buried-oxide SOI and FinFETs. Quantitative analysis is undertaken in terms of three major variation sources: random doping distribution, gate length deviation, and line edge roughness. The analysis also features a low Vt-fluctuation transistor for 16nm node achieved with undoped body, mid-gap metal gate, and nanowire channel","PeriodicalId":269854,"journal":{"name":"IEEE Custom Integrated Circuits Conference 2006","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Electrical Characteristic Fluctuations in Sub-45nm CMOS Devices\",\"authors\":\"Fu-Liang Yang, Jiunn-Ren Hwang, Yiming Li\",\"doi\":\"10.1109/CICC.2006.320881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Random fluctuations of electrical characteristics in sub-45nm CMOS devices introduced by process-parameter variations through severe short channel effects have made the scaling of conventional planar transistors much more difficult than ever before, especially while further reduction of gate dielectric thickness is ambiguous. In this paper, the authors systematically investigate the fluctuations of threshold voltages at varied gate length, considering the effects of channel doping, gate dielectric thickness, and new transistor structures such as thin-buried-oxide SOI and FinFETs. Quantitative analysis is undertaken in terms of three major variation sources: random doping distribution, gate length deviation, and line edge roughness. The analysis also features a low Vt-fluctuation transistor for 16nm node achieved with undoped body, mid-gap metal gate, and nanowire channel\",\"PeriodicalId\":269854,\"journal\":{\"name\":\"IEEE Custom Integrated Circuits Conference 2006\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Custom Integrated Circuits Conference 2006\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC.2006.320881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Custom Integrated Circuits Conference 2006","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2006.320881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

在45纳米以下的CMOS器件中,由于严重的短沟道效应引起的工艺参数变化导致电特性的随机波动,使得传统平面晶体管的缩放比以往更加困难,特别是在栅极介电厚度进一步减小的情况下。在本文中,作者系统地研究了不同栅极长度下阈值电压的波动,考虑了通道掺杂、栅极介电厚度和新型晶体管结构(如薄埋氧化物SOI和finfet)的影响。定量分析了三个主要的变化源:随机掺杂分布、栅极长度偏差和线边缘粗糙度。该分析还介绍了采用无掺杂体、中间隙金属栅极和纳米线通道实现的16nm节点低电压波动晶体管
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical Characteristic Fluctuations in Sub-45nm CMOS Devices
Random fluctuations of electrical characteristics in sub-45nm CMOS devices introduced by process-parameter variations through severe short channel effects have made the scaling of conventional planar transistors much more difficult than ever before, especially while further reduction of gate dielectric thickness is ambiguous. In this paper, the authors systematically investigate the fluctuations of threshold voltages at varied gate length, considering the effects of channel doping, gate dielectric thickness, and new transistor structures such as thin-buried-oxide SOI and FinFETs. Quantitative analysis is undertaken in terms of three major variation sources: random doping distribution, gate length deviation, and line edge roughness. The analysis also features a low Vt-fluctuation transistor for 16nm node achieved with undoped body, mid-gap metal gate, and nanowire channel
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信