Sarah H. Creem-Regehr, Jeanine K. Stefanucci, W. Thompson, N. Nash, Michael McCardell
{"title":"Oculus Rift (DK2)中的自我中心距离感知","authors":"Sarah H. Creem-Regehr, Jeanine K. Stefanucci, W. Thompson, N. Nash, Michael McCardell","doi":"10.1145/2804408.2804422","DOIUrl":null,"url":null,"abstract":"Perceiving an accurate sense of absolute scale is important for the utility of virtual environments (VEs). Research shows that absolute egocentric distances are underestimated in VEs compared to the same judgments made in the real world, but there are inconsistencies in the amount of underestimation. We examined two possible factors in the variation in the magnitude of distance underestimation. We compared egocentric distance judgments in a high-cost (NVIS SX60) and low-cost (Oculus Rift DK2) HMD using both indoor and outdoor highly-realistic virtual models. Performance more accurately matched the intended distance in the Oculus compared to the NVIS, and regardless of the HMD, distances were underestimated more in the outdoor versus the indoor VE. These results suggest promise in future use of consumer-level wide field-of-view HMDs for space perception research and applications, and the importance of considering the context of the environment as a factor in the perception of absolute scale within VEs.","PeriodicalId":283323,"journal":{"name":"Proceedings of the ACM SIGGRAPH Symposium on Applied Perception","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Egocentric distance perception in the Oculus Rift (DK2)\",\"authors\":\"Sarah H. Creem-Regehr, Jeanine K. Stefanucci, W. Thompson, N. Nash, Michael McCardell\",\"doi\":\"10.1145/2804408.2804422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perceiving an accurate sense of absolute scale is important for the utility of virtual environments (VEs). Research shows that absolute egocentric distances are underestimated in VEs compared to the same judgments made in the real world, but there are inconsistencies in the amount of underestimation. We examined two possible factors in the variation in the magnitude of distance underestimation. We compared egocentric distance judgments in a high-cost (NVIS SX60) and low-cost (Oculus Rift DK2) HMD using both indoor and outdoor highly-realistic virtual models. Performance more accurately matched the intended distance in the Oculus compared to the NVIS, and regardless of the HMD, distances were underestimated more in the outdoor versus the indoor VE. These results suggest promise in future use of consumer-level wide field-of-view HMDs for space perception research and applications, and the importance of considering the context of the environment as a factor in the perception of absolute scale within VEs.\",\"PeriodicalId\":283323,\"journal\":{\"name\":\"Proceedings of the ACM SIGGRAPH Symposium on Applied Perception\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM SIGGRAPH Symposium on Applied Perception\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2804408.2804422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGGRAPH Symposium on Applied Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2804408.2804422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Egocentric distance perception in the Oculus Rift (DK2)
Perceiving an accurate sense of absolute scale is important for the utility of virtual environments (VEs). Research shows that absolute egocentric distances are underestimated in VEs compared to the same judgments made in the real world, but there are inconsistencies in the amount of underestimation. We examined two possible factors in the variation in the magnitude of distance underestimation. We compared egocentric distance judgments in a high-cost (NVIS SX60) and low-cost (Oculus Rift DK2) HMD using both indoor and outdoor highly-realistic virtual models. Performance more accurately matched the intended distance in the Oculus compared to the NVIS, and regardless of the HMD, distances were underestimated more in the outdoor versus the indoor VE. These results suggest promise in future use of consumer-level wide field-of-view HMDs for space perception research and applications, and the importance of considering the context of the environment as a factor in the perception of absolute scale within VEs.