{"title":"基于分隔符的动态平面图稀疏化算法","authors":"D. Eppstein, Z. Galil, G. Italiano, T. Spencer","doi":"10.1145/167088.167159","DOIUrl":null,"url":null,"abstract":"We describe algorithms and data structures for maintaining a dynamic planar graph subject to edge insertions and edge deletions that preserve planarity but that can change the embedding. We give a fully dynamic planarity testing algorithm that maintains a graph subject to edge insertions and deletions, and allows queries that test whether the graph is currently planar, or whether a potential new edge would violate planarity, in amortized time O(nl 12) per update or query. We maintain the 2and 3-vertex-connected components, and the 3and 4-edge-connected components of a planar graph in O(n.llz ) time per insertion, deletion or query. We give fully dynamic algorithms for maintaining the connected components, the 2-edge-connected components, and the minimum spanning forest of a planar graph in time (9(log n) per insertion and 0(log2 n) per deletion, assuming that insertions keep the graph planar. All our algorithms improve previous bounds: the improvements are based upon a new type of sparsification combined wit h several properties of separators in planar graphs.","PeriodicalId":280602,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Separator based sparsification for dynamic planar graph algorithms\",\"authors\":\"D. Eppstein, Z. Galil, G. Italiano, T. Spencer\",\"doi\":\"10.1145/167088.167159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe algorithms and data structures for maintaining a dynamic planar graph subject to edge insertions and edge deletions that preserve planarity but that can change the embedding. We give a fully dynamic planarity testing algorithm that maintains a graph subject to edge insertions and deletions, and allows queries that test whether the graph is currently planar, or whether a potential new edge would violate planarity, in amortized time O(nl 12) per update or query. We maintain the 2and 3-vertex-connected components, and the 3and 4-edge-connected components of a planar graph in O(n.llz ) time per insertion, deletion or query. We give fully dynamic algorithms for maintaining the connected components, the 2-edge-connected components, and the minimum spanning forest of a planar graph in time (9(log n) per insertion and 0(log2 n) per deletion, assuming that insertions keep the graph planar. All our algorithms improve previous bounds: the improvements are based upon a new type of sparsification combined wit h several properties of separators in planar graphs.\",\"PeriodicalId\":280602,\"journal\":{\"name\":\"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/167088.167159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/167088.167159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Separator based sparsification for dynamic planar graph algorithms
We describe algorithms and data structures for maintaining a dynamic planar graph subject to edge insertions and edge deletions that preserve planarity but that can change the embedding. We give a fully dynamic planarity testing algorithm that maintains a graph subject to edge insertions and deletions, and allows queries that test whether the graph is currently planar, or whether a potential new edge would violate planarity, in amortized time O(nl 12) per update or query. We maintain the 2and 3-vertex-connected components, and the 3and 4-edge-connected components of a planar graph in O(n.llz ) time per insertion, deletion or query. We give fully dynamic algorithms for maintaining the connected components, the 2-edge-connected components, and the minimum spanning forest of a planar graph in time (9(log n) per insertion and 0(log2 n) per deletion, assuming that insertions keep the graph planar. All our algorithms improve previous bounds: the improvements are based upon a new type of sparsification combined wit h several properties of separators in planar graphs.