视图外推的延迟神经渲染

Tobias Bertel, Yusuke Tomoto, Srinivas Rao, Rodrigo Ortiz Cayon, Stefan Holzer, Christian Richardt
{"title":"视图外推的延迟神经渲染","authors":"Tobias Bertel, Yusuke Tomoto, Srinivas Rao, Rodrigo Ortiz Cayon, Stefan Holzer, Christian Richardt","doi":"10.1145/3415264.3425441","DOIUrl":null,"url":null,"abstract":"Image-based rendering methods that support visually pleasing specular surface reflections require accurate surface geometry and a large number of input images. Recent advances in neural scene representations show excellent visual quality while requiring only imperfect mesh proxies or no surface-based proxies at all. While providing state-of-the-art visual quality, the inference time of learned models is usually too slow for interactive applications. While using a casually captured circular video sweep as input, we extend Deferred Neural Rendering to extrapolate smooth viewpoints around specular objects like a car.","PeriodicalId":372541,"journal":{"name":"SIGGRAPH Asia 2020 Posters","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deferred Neural Rendering for View Extrapolation\",\"authors\":\"Tobias Bertel, Yusuke Tomoto, Srinivas Rao, Rodrigo Ortiz Cayon, Stefan Holzer, Christian Richardt\",\"doi\":\"10.1145/3415264.3425441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image-based rendering methods that support visually pleasing specular surface reflections require accurate surface geometry and a large number of input images. Recent advances in neural scene representations show excellent visual quality while requiring only imperfect mesh proxies or no surface-based proxies at all. While providing state-of-the-art visual quality, the inference time of learned models is usually too slow for interactive applications. While using a casually captured circular video sweep as input, we extend Deferred Neural Rendering to extrapolate smooth viewpoints around specular objects like a car.\",\"PeriodicalId\":372541,\"journal\":{\"name\":\"SIGGRAPH Asia 2020 Posters\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2020 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3415264.3425441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2020 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3415264.3425441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

支持视觉上令人愉悦的镜面反射的基于图像的渲染方法需要精确的表面几何形状和大量的输入图像。神经场景表示的最新进展显示出出色的视觉质量,而只需要不完美的网格代理或根本不需要基于表面的代理。虽然提供了最先进的视觉质量,但学习模型的推理时间对于交互式应用来说通常太慢。当使用随意捕获的圆形视频扫描作为输入时,我们扩展了延迟神经渲染来推断围绕镜面物体(如汽车)的平滑视点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deferred Neural Rendering for View Extrapolation
Image-based rendering methods that support visually pleasing specular surface reflections require accurate surface geometry and a large number of input images. Recent advances in neural scene representations show excellent visual quality while requiring only imperfect mesh proxies or no surface-based proxies at all. While providing state-of-the-art visual quality, the inference time of learned models is usually too slow for interactive applications. While using a casually captured circular video sweep as input, we extend Deferred Neural Rendering to extrapolate smooth viewpoints around specular objects like a car.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信