基于自适应算子率的遗传小生境文档聚类算法

Elizabeth León Guzman, Jonatan Gómez, O. Nasraoui
{"title":"基于自适应算子率的遗传小生境文档聚类算法","authors":"Elizabeth León Guzman, Jonatan Gómez, O. Nasraoui","doi":"10.1109/LA-WEB.2012.22","DOIUrl":null,"url":null,"abstract":"We propose a Genetic algorithm for document clustering, where an evolutionary multimodal optimization algorithm evolves candidate cluster representative solutions to search for dense regions in the sparse high dimensional vector space of text documents. The evolution affects not only the document cluster representatives but also the genetic operator rates which are evolved simultaneously with the document cluster representative solutions. The evolving population consists of candidate document cluster representatives that are encoded in the form of a sparse index and sparse index/frequency variable length vectors. In addition, specialized sparse genetic operators are defined for this special representation. The proposed specialized genetic operators achieve different degrees of exploitation and exploration in searching for the optimal document cluster prototypes, in particular the most specialized operator for the document clustering problem is the Sparse Top-K-Addition operator, which can be seen as an incentive towards a more aggressive exploitation of the local context in a small subset of documents, whereas the simple Sparse Real Addition operator works more in an exploratory manner. As shown in our experiments on two well-known document data sets, taking into account associated terms within a local context adds the benefit of an explicit latent semantic consideration in the search for optimal term lists to describe the cluster prototypes.","PeriodicalId":333389,"journal":{"name":"2012 Eighth Latin American Web Congress","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Genetic Niching Algorithm with Self-Adaptating Operator Rates for Document Clustering\",\"authors\":\"Elizabeth León Guzman, Jonatan Gómez, O. Nasraoui\",\"doi\":\"10.1109/LA-WEB.2012.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a Genetic algorithm for document clustering, where an evolutionary multimodal optimization algorithm evolves candidate cluster representative solutions to search for dense regions in the sparse high dimensional vector space of text documents. The evolution affects not only the document cluster representatives but also the genetic operator rates which are evolved simultaneously with the document cluster representative solutions. The evolving population consists of candidate document cluster representatives that are encoded in the form of a sparse index and sparse index/frequency variable length vectors. In addition, specialized sparse genetic operators are defined for this special representation. The proposed specialized genetic operators achieve different degrees of exploitation and exploration in searching for the optimal document cluster prototypes, in particular the most specialized operator for the document clustering problem is the Sparse Top-K-Addition operator, which can be seen as an incentive towards a more aggressive exploitation of the local context in a small subset of documents, whereas the simple Sparse Real Addition operator works more in an exploratory manner. As shown in our experiments on two well-known document data sets, taking into account associated terms within a local context adds the benefit of an explicit latent semantic consideration in the search for optimal term lists to describe the cluster prototypes.\",\"PeriodicalId\":333389,\"journal\":{\"name\":\"2012 Eighth Latin American Web Congress\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Eighth Latin American Web Congress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LA-WEB.2012.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Eighth Latin American Web Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-WEB.2012.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种用于文档聚类的遗传算法,其中一种进化的多模态优化算法进化出候选聚类代表解,以在文本文档的稀疏高维向量空间中搜索密集区域。这种进化不仅影响文档聚类代表,而且影响与文档聚类代表解同时进化的遗传算子率。不断进化的种群由候选文档聚类代表组成,这些代表以稀疏索引和稀疏索引/频率可变长度向量的形式编码。此外,还为这种特殊的表示定义了专门的稀疏遗传算子。所提出的专业化遗传算子在寻找最优文档聚类原型方面实现了不同程度的挖掘和探索,特别是针对文档聚类问题最专业化的算子是稀疏Top-K-Addition算子,这可以看作是对在一小部分文档中更积极地利用局部上下文的激励,而简单的稀疏实加法算子则更多地以探索的方式工作。正如我们在两个众所周知的文档数据集上的实验所显示的那样,在搜索描述集群原型的最佳术语列表时,考虑本地上下文中的相关术语增加了显式潜在语义考虑的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Genetic Niching Algorithm with Self-Adaptating Operator Rates for Document Clustering
We propose a Genetic algorithm for document clustering, where an evolutionary multimodal optimization algorithm evolves candidate cluster representative solutions to search for dense regions in the sparse high dimensional vector space of text documents. The evolution affects not only the document cluster representatives but also the genetic operator rates which are evolved simultaneously with the document cluster representative solutions. The evolving population consists of candidate document cluster representatives that are encoded in the form of a sparse index and sparse index/frequency variable length vectors. In addition, specialized sparse genetic operators are defined for this special representation. The proposed specialized genetic operators achieve different degrees of exploitation and exploration in searching for the optimal document cluster prototypes, in particular the most specialized operator for the document clustering problem is the Sparse Top-K-Addition operator, which can be seen as an incentive towards a more aggressive exploitation of the local context in a small subset of documents, whereas the simple Sparse Real Addition operator works more in an exploratory manner. As shown in our experiments on two well-known document data sets, taking into account associated terms within a local context adds the benefit of an explicit latent semantic consideration in the search for optimal term lists to describe the cluster prototypes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信