{"title":"分析ADAS和移动成像应用的异构计算架构","authors":"Rafal Malewski, Markus Levy, P. Torelli","doi":"10.1109/HPEC.2016.7761611","DOIUrl":null,"url":null,"abstract":"This document describes a benchmark suite that utilizes real-world workloads from ADAS and Mobile Imaging, to stress various forms of compute resources on embedded heterogeneous architectures, for determination of optimal distribution of compute load across accelerators.","PeriodicalId":308129,"journal":{"name":"2016 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing heterogeneous computing architectures for ADAS and Mobile Imaging applications\",\"authors\":\"Rafal Malewski, Markus Levy, P. Torelli\",\"doi\":\"10.1109/HPEC.2016.7761611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This document describes a benchmark suite that utilizes real-world workloads from ADAS and Mobile Imaging, to stress various forms of compute resources on embedded heterogeneous architectures, for determination of optimal distribution of compute load across accelerators.\",\"PeriodicalId\":308129,\"journal\":{\"name\":\"2016 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2016.7761611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2016.7761611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analyzing heterogeneous computing architectures for ADAS and Mobile Imaging applications
This document describes a benchmark suite that utilizes real-world workloads from ADAS and Mobile Imaging, to stress various forms of compute resources on embedded heterogeneous architectures, for determination of optimal distribution of compute load across accelerators.