{"title":"用于监测和刺激工具的背投射皮质电位成像","authors":"D. Haor, R. Shavit, A. Geva","doi":"10.1109/URSI-EMTS.2016.7571530","DOIUrl":null,"url":null,"abstract":"In this work, a new cortical potential imaging (CPI) method is presented. The potential distribution on the scalp is back-projected to the cortex surface using an electrostatic propagation mechanism. Combining the information from MRI derived realistic head conductivity model and the ability of the surface Laplacian (SL) to estimate the cortical normal currents, together with the finite element method (FEM) we illustrate the back-projection CPI (BP-CPI) which gives a simple, fast, high-resolution and accurate CPI, solved in only one iteration. In this paper we describe the new method and show simulative validation results. The BP-CPI was designed for easy integration with monitoring and stimulation tools for better understanding the underlying cortical activity.","PeriodicalId":431569,"journal":{"name":"2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Back-projected cortical potential imaging for monitoring and stimulation tools\",\"authors\":\"D. Haor, R. Shavit, A. Geva\",\"doi\":\"10.1109/URSI-EMTS.2016.7571530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a new cortical potential imaging (CPI) method is presented. The potential distribution on the scalp is back-projected to the cortex surface using an electrostatic propagation mechanism. Combining the information from MRI derived realistic head conductivity model and the ability of the surface Laplacian (SL) to estimate the cortical normal currents, together with the finite element method (FEM) we illustrate the back-projection CPI (BP-CPI) which gives a simple, fast, high-resolution and accurate CPI, solved in only one iteration. In this paper we describe the new method and show simulative validation results. The BP-CPI was designed for easy integration with monitoring and stimulation tools for better understanding the underlying cortical activity.\",\"PeriodicalId\":431569,\"journal\":{\"name\":\"2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URSI-EMTS.2016.7571530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URSI-EMTS.2016.7571530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Back-projected cortical potential imaging for monitoring and stimulation tools
In this work, a new cortical potential imaging (CPI) method is presented. The potential distribution on the scalp is back-projected to the cortex surface using an electrostatic propagation mechanism. Combining the information from MRI derived realistic head conductivity model and the ability of the surface Laplacian (SL) to estimate the cortical normal currents, together with the finite element method (FEM) we illustrate the back-projection CPI (BP-CPI) which gives a simple, fast, high-resolution and accurate CPI, solved in only one iteration. In this paper we describe the new method and show simulative validation results. The BP-CPI was designed for easy integration with monitoring and stimulation tools for better understanding the underlying cortical activity.