一种沿仿射子空间的超平面投影核自适应滤波算法

M. Yukawa, R. Ishii
{"title":"一种沿仿射子空间的超平面投影核自适应滤波算法","authors":"M. Yukawa, R. Ishii","doi":"10.5281/ZENODO.52430","DOIUrl":null,"url":null,"abstract":"We propose a novel kernel adaptive filtering algorithm that selectively updates a few coefficients at each iteration by projecting the current filter onto the zero instantaneous-error hyperplane along a certain time-dependent affine subspace. Coherence is exploited for selecting the coefficients to be updated as well as for measuring the novelty of new data. The proposed algorithm is a natural extension of the normalized kernel least mean squares algorithm operating iterative hyperplane projections in a reproducing kernel Hilbert space. The proposed algorithm enjoys low computational complexity. Numerical examples indicate high potential of the proposed algorithm.","PeriodicalId":201182,"journal":{"name":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"An efficient kernel adaptive filtering algorithm using hyperplane projection along affine subspace\",\"authors\":\"M. Yukawa, R. Ishii\",\"doi\":\"10.5281/ZENODO.52430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel kernel adaptive filtering algorithm that selectively updates a few coefficients at each iteration by projecting the current filter onto the zero instantaneous-error hyperplane along a certain time-dependent affine subspace. Coherence is exploited for selecting the coefficients to be updated as well as for measuring the novelty of new data. The proposed algorithm is a natural extension of the normalized kernel least mean squares algorithm operating iterative hyperplane projections in a reproducing kernel Hilbert space. The proposed algorithm enjoys low computational complexity. Numerical examples indicate high potential of the proposed algorithm.\",\"PeriodicalId\":201182,\"journal\":{\"name\":\"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.52430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.52430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们提出了一种新的核自适应滤波算法,该算法通过将当前滤波器沿一定时变仿射子空间投影到零瞬时误差超平面上,在每次迭代中选择性地更新几个系数。相干性被用于选择要更新的系数以及测量新数据的新颖性。该算法是正则化核最小均方算法的自然扩展,该算法在可复制核希尔伯特空间中处理迭代超平面投影。该算法具有较低的计算复杂度。数值算例表明了该算法的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient kernel adaptive filtering algorithm using hyperplane projection along affine subspace
We propose a novel kernel adaptive filtering algorithm that selectively updates a few coefficients at each iteration by projecting the current filter onto the zero instantaneous-error hyperplane along a certain time-dependent affine subspace. Coherence is exploited for selecting the coefficients to be updated as well as for measuring the novelty of new data. The proposed algorithm is a natural extension of the normalized kernel least mean squares algorithm operating iterative hyperplane projections in a reproducing kernel Hilbert space. The proposed algorithm enjoys low computational complexity. Numerical examples indicate high potential of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信