{"title":"一种沿仿射子空间的超平面投影核自适应滤波算法","authors":"M. Yukawa, R. Ishii","doi":"10.5281/ZENODO.52430","DOIUrl":null,"url":null,"abstract":"We propose a novel kernel adaptive filtering algorithm that selectively updates a few coefficients at each iteration by projecting the current filter onto the zero instantaneous-error hyperplane along a certain time-dependent affine subspace. Coherence is exploited for selecting the coefficients to be updated as well as for measuring the novelty of new data. The proposed algorithm is a natural extension of the normalized kernel least mean squares algorithm operating iterative hyperplane projections in a reproducing kernel Hilbert space. The proposed algorithm enjoys low computational complexity. Numerical examples indicate high potential of the proposed algorithm.","PeriodicalId":201182,"journal":{"name":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"An efficient kernel adaptive filtering algorithm using hyperplane projection along affine subspace\",\"authors\":\"M. Yukawa, R. Ishii\",\"doi\":\"10.5281/ZENODO.52430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel kernel adaptive filtering algorithm that selectively updates a few coefficients at each iteration by projecting the current filter onto the zero instantaneous-error hyperplane along a certain time-dependent affine subspace. Coherence is exploited for selecting the coefficients to be updated as well as for measuring the novelty of new data. The proposed algorithm is a natural extension of the normalized kernel least mean squares algorithm operating iterative hyperplane projections in a reproducing kernel Hilbert space. The proposed algorithm enjoys low computational complexity. Numerical examples indicate high potential of the proposed algorithm.\",\"PeriodicalId\":201182,\"journal\":{\"name\":\"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.52430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.52430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient kernel adaptive filtering algorithm using hyperplane projection along affine subspace
We propose a novel kernel adaptive filtering algorithm that selectively updates a few coefficients at each iteration by projecting the current filter onto the zero instantaneous-error hyperplane along a certain time-dependent affine subspace. Coherence is exploited for selecting the coefficients to be updated as well as for measuring the novelty of new data. The proposed algorithm is a natural extension of the normalized kernel least mean squares algorithm operating iterative hyperplane projections in a reproducing kernel Hilbert space. The proposed algorithm enjoys low computational complexity. Numerical examples indicate high potential of the proposed algorithm.