{"title":"熔融铝:电导率测量的电感技术","authors":"S. Bakhtiyarov, R. Overfelt","doi":"10.1201/9781351045636-140000326","DOIUrl":null,"url":null,"abstract":"A rotational, contactless inductive measurement technique has been used to determine the effect of pores and metallic insertions on the electrical resistivity of A2011 aluminum alloy at different temperatures. It is shown that the electrical resistivity increases with the total volume of pores and is also dependent on the pores locations and orientation. Additional energy losses were found on the contact surfaces between sample and insertions.","PeriodicalId":348912,"journal":{"name":"Encyclopedia of Aluminum and Its Alloys","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molten Aluminum: Inductive Technique for Electrical Conductivity Measurements\",\"authors\":\"S. Bakhtiyarov, R. Overfelt\",\"doi\":\"10.1201/9781351045636-140000326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A rotational, contactless inductive measurement technique has been used to determine the effect of pores and metallic insertions on the electrical resistivity of A2011 aluminum alloy at different temperatures. It is shown that the electrical resistivity increases with the total volume of pores and is also dependent on the pores locations and orientation. Additional energy losses were found on the contact surfaces between sample and insertions.\",\"PeriodicalId\":348912,\"journal\":{\"name\":\"Encyclopedia of Aluminum and Its Alloys\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Aluminum and Its Alloys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781351045636-140000326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Aluminum and Its Alloys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781351045636-140000326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molten Aluminum: Inductive Technique for Electrical Conductivity Measurements
A rotational, contactless inductive measurement technique has been used to determine the effect of pores and metallic insertions on the electrical resistivity of A2011 aluminum alloy at different temperatures. It is shown that the electrical resistivity increases with the total volume of pores and is also dependent on the pores locations and orientation. Additional energy losses were found on the contact surfaces between sample and insertions.