平头波浪中船体动力与撞击的计算模型

K. Matveev
{"title":"平头波浪中船体动力与撞击的计算模型","authors":"K. Matveev","doi":"10.1115/fedsm2021-65548","DOIUrl":null,"url":null,"abstract":"\n Fast boats often operate in planing regimes when they skim on the water surface and their weight is supported primarily by hydrodynamic forces. In the presence of waves, such hulls may experience large nonlinear motions and hydrodynamic loads, which limit their operational capabilities. To predict hull motions and loads and to optimize the hull shape and structure, one can take advantage of computational fluid dynamics tools that simulate these complex nonlinear flow processes and provide detailed hydrodynamic data, including pressure distribution on the hull and water spray. However, validation of these modeling approaches is needed in order to confidently use numerical tools for the boat design. In this study, numerical modeling is accomplished for dynamics of a realistic hull previously tested in controlled wave environments in towing tanks. Time-domain simulations were first carried out in regular head waves. Mesh-verification studies suggested appropriate numerical grid resolution. The hull’s heave motions, drag forces and bow accelerations were captured and compared with experimental data. The formal validation procedure was applied to confirm suitability of the current numerical approach. In the investigated regular-wave conditions, very pronounced slamming phenomenon was observed, when the hull re-entered water and experienced peak hydrodynamic loads. Pressure distributions on the hull surface and water surface deformations are presented for several time instances around the slamming event. In addition, numerical simulations were also conducted for random waves with statistical sea-wave parameters resembling those of the studied regular waves. The statistical boat responses, such as bow accelerations, heaving motions and drag forces, are compared to the corresponding metrics obtained in regular waves.","PeriodicalId":359619,"journal":{"name":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational Modeling of Planing Hull Dynamics and Slamming in Head Waves\",\"authors\":\"K. Matveev\",\"doi\":\"10.1115/fedsm2021-65548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fast boats often operate in planing regimes when they skim on the water surface and their weight is supported primarily by hydrodynamic forces. In the presence of waves, such hulls may experience large nonlinear motions and hydrodynamic loads, which limit their operational capabilities. To predict hull motions and loads and to optimize the hull shape and structure, one can take advantage of computational fluid dynamics tools that simulate these complex nonlinear flow processes and provide detailed hydrodynamic data, including pressure distribution on the hull and water spray. However, validation of these modeling approaches is needed in order to confidently use numerical tools for the boat design. In this study, numerical modeling is accomplished for dynamics of a realistic hull previously tested in controlled wave environments in towing tanks. Time-domain simulations were first carried out in regular head waves. Mesh-verification studies suggested appropriate numerical grid resolution. The hull’s heave motions, drag forces and bow accelerations were captured and compared with experimental data. The formal validation procedure was applied to confirm suitability of the current numerical approach. In the investigated regular-wave conditions, very pronounced slamming phenomenon was observed, when the hull re-entered water and experienced peak hydrodynamic loads. Pressure distributions on the hull surface and water surface deformations are presented for several time instances around the slamming event. In addition, numerical simulations were also conducted for random waves with statistical sea-wave parameters resembling those of the studied regular waves. The statistical boat responses, such as bow accelerations, heaving motions and drag forces, are compared to the corresponding metrics obtained in regular waves.\",\"PeriodicalId\":359619,\"journal\":{\"name\":\"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fedsm2021-65548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-65548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当快艇在水面上掠过时,它们的重量主要是由水动力支撑的。在波浪存在的情况下,这种船体可能会经历巨大的非线性运动和水动力载荷,这限制了它们的操作能力。为了预测船体运动和载荷,并优化船体形状和结构,可以利用计算流体动力学工具来模拟这些复杂的非线性流动过程,并提供详细的水动力数据,包括船体上的压力分布和水喷淋。然而,为了自信地使用数值工具进行船舶设计,需要验证这些建模方法。在这项研究中,完成了一个真实的船体动力学的数值模拟,之前在受控的波浪环境中测试拖曳水箱。首先在规则头波中进行时域模拟。网格验证研究建议适当的数值网格分辨率。捕获了船体的升沉运动、阻力和船首加速度,并与实验数据进行了比较。应用正式验证程序来确认当前数值方法的适用性。在研究的正波条件下,当船体重新进入水中并经历峰值水动力载荷时,观察到非常明显的砰击现象。给出了撞击事件前后船体表面压力分布和水面变形情况。此外,还对随机波进行了数值模拟,这些随机波的统计海浪参数与所研究的规则波相似。统计船的响应,如船首加速度、起伏运动和阻力,与在规则波浪中得到的相应指标进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Modeling of Planing Hull Dynamics and Slamming in Head Waves
Fast boats often operate in planing regimes when they skim on the water surface and their weight is supported primarily by hydrodynamic forces. In the presence of waves, such hulls may experience large nonlinear motions and hydrodynamic loads, which limit their operational capabilities. To predict hull motions and loads and to optimize the hull shape and structure, one can take advantage of computational fluid dynamics tools that simulate these complex nonlinear flow processes and provide detailed hydrodynamic data, including pressure distribution on the hull and water spray. However, validation of these modeling approaches is needed in order to confidently use numerical tools for the boat design. In this study, numerical modeling is accomplished for dynamics of a realistic hull previously tested in controlled wave environments in towing tanks. Time-domain simulations were first carried out in regular head waves. Mesh-verification studies suggested appropriate numerical grid resolution. The hull’s heave motions, drag forces and bow accelerations were captured and compared with experimental data. The formal validation procedure was applied to confirm suitability of the current numerical approach. In the investigated regular-wave conditions, very pronounced slamming phenomenon was observed, when the hull re-entered water and experienced peak hydrodynamic loads. Pressure distributions on the hull surface and water surface deformations are presented for several time instances around the slamming event. In addition, numerical simulations were also conducted for random waves with statistical sea-wave parameters resembling those of the studied regular waves. The statistical boat responses, such as bow accelerations, heaving motions and drag forces, are compared to the corresponding metrics obtained in regular waves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信