构建碰撞箱损坏的代理模型

K. Sugiyama, Y. Wada
{"title":"构建碰撞箱损坏的代理模型","authors":"K. Sugiyama, Y. Wada","doi":"10.23967/wccm-apcom.2022.031","DOIUrl":null,"url":null,"abstract":". The structural strength evaluation of crash boxes is predicted by machine learning in this study. The training data was obtained from the dynamic elastic plastic analysis of the crash box. The input physical quantities are barrier angle, box thickness, material properties and mass equivalent to vehicle weight. The output physical quantity is the reaction force. Buckling occurs in the analysis and different directions of corruptions are one of the most interesting phenomenon from a point of engineering view. We would like to propose an adaptive method for machine learning in structural evaluation that can be used for a wide range of structural evaluations.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of a surrogate model for crash box corruption\",\"authors\":\"K. Sugiyama, Y. Wada\",\"doi\":\"10.23967/wccm-apcom.2022.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The structural strength evaluation of crash boxes is predicted by machine learning in this study. The training data was obtained from the dynamic elastic plastic analysis of the crash box. The input physical quantities are barrier angle, box thickness, material properties and mass equivalent to vehicle weight. The output physical quantity is the reaction force. Buckling occurs in the analysis and different directions of corruptions are one of the most interesting phenomenon from a point of engineering view. We would like to propose an adaptive method for machine learning in structural evaluation that can be used for a wide range of structural evaluations.\",\"PeriodicalId\":429847,\"journal\":{\"name\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/wccm-apcom.2022.031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/wccm-apcom.2022.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 本研究采用机器学习预测碰撞箱的结构强度评估。训练数据来源于碰撞箱的动弹塑性分析。输入的物理量为屏障角、箱体厚度、材料性能和相当于车辆重量的质量。输出的物理量是反作用力。从工程的角度来看,分析过程中会发生屈曲和不同方向的腐蚀是最有趣的现象之一。我们想为结构评估中的机器学习提出一种自适应方法,可用于广泛的结构评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of a surrogate model for crash box corruption
. The structural strength evaluation of crash boxes is predicted by machine learning in this study. The training data was obtained from the dynamic elastic plastic analysis of the crash box. The input physical quantities are barrier angle, box thickness, material properties and mass equivalent to vehicle weight. The output physical quantity is the reaction force. Buckling occurs in the analysis and different directions of corruptions are one of the most interesting phenomenon from a point of engineering view. We would like to propose an adaptive method for machine learning in structural evaluation that can be used for a wide range of structural evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信