减少传感器数量的lcl滤波网格连接VSC的自适应预测- dpc

Hosein Gholami-Khesht, P. Davari, F. Blaabjerg
{"title":"减少传感器数量的lcl滤波网格连接VSC的自适应预测- dpc","authors":"Hosein Gholami-Khesht, P. Davari, F. Blaabjerg","doi":"10.23919/EPE20ECCEEurope43536.2020.9215839","DOIUrl":null,"url":null,"abstract":"An adaptive predictive direct power control (P-DPC) method using a Luenberger observer is proposed in conjunction with conventional P-DPC, which reduces the system sensitivity to parameter mismatches and control delays. Moreover, the observer facilitates sensorless operation of the proposed method. The performance of the proposed adaptive P-DPC is confirmed under various simulation and experimental tests.","PeriodicalId":241752,"journal":{"name":"2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive Predictive-DPC for LCL-Filtered Grid Connected VSC with Reduced Number of Sensors\",\"authors\":\"Hosein Gholami-Khesht, P. Davari, F. Blaabjerg\",\"doi\":\"10.23919/EPE20ECCEEurope43536.2020.9215839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive predictive direct power control (P-DPC) method using a Luenberger observer is proposed in conjunction with conventional P-DPC, which reduces the system sensitivity to parameter mismatches and control delays. Moreover, the observer facilitates sensorless operation of the proposed method. The performance of the proposed adaptive P-DPC is confirmed under various simulation and experimental tests.\",\"PeriodicalId\":241752,\"journal\":{\"name\":\"2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EPE20ECCEEurope43536.2020.9215839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EPE20ECCEEurope43536.2020.9215839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

结合传统的P-DPC控制方法,提出了一种基于Luenberger观测器的自适应预测直接功率控制方法,降低了系统对参数失配和控制延迟的灵敏度。此外,该观测器有助于该方法的无传感器操作。通过各种仿真和实验验证了该自适应P-DPC的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Predictive-DPC for LCL-Filtered Grid Connected VSC with Reduced Number of Sensors
An adaptive predictive direct power control (P-DPC) method using a Luenberger observer is proposed in conjunction with conventional P-DPC, which reduces the system sensitivity to parameter mismatches and control delays. Moreover, the observer facilitates sensorless operation of the proposed method. The performance of the proposed adaptive P-DPC is confirmed under various simulation and experimental tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信