D. Sakyi-Arthur, S. Mensah, K. Adu, K. Dompreh, R. Edziah, N. G. Mensah, C. Jebuni-Adanu
{"title":"半导体氟化碳纳米管作为一种低压电流放大声学器件","authors":"D. Sakyi-Arthur, S. Mensah, K. Adu, K. Dompreh, R. Edziah, N. G. Mensah, C. Jebuni-Adanu","doi":"10.4236/wjcmp.2020.101002","DOIUrl":null,"url":null,"abstract":"Acoustoelectric effect (AE) in a non-degenerate fluorinated single walled carbon nanotube (FSWCNT) semiconductor was carried out using a tractable analytical approach in the hypersound regime , where q is the acoustic wavenumber and is the electron mean-free path. In the presence of an external electric field, a strong nonlinear dependence of the normalized AE current density , on ( is the electron drift velocity and is the speed of sound in the medium) was observed and depends on the acoustic wave frequency, , wavenumber q, temperature T and the electron-phonon interactions parameter, . When , decreases to a resonance minimum and increases again, where the FSWCNT is said to be amplifying the current. Conversely, when , rises to a maximum and starts to decrease, similar to the observed behaviour in negative differential conductivity which is a consequence of Bragg’s reflection at the band edges at T=300K. However, FSWCNT will offer the potential for room temperature application as an acoustic switch or transistor and also as a material for ultrasound current source density imaging (UCSDI) and AE hydrophone devices in biomedical engineering. Moreover, our results prove the feasibility of implementing chip-scale non-reciprocal acoustic devices in an FSWCNT platform through acoustoelectric amplification.","PeriodicalId":308307,"journal":{"name":"World Journal of Condensed Matter Physics","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Semiconductor Fluorinated Carbon Nanotube as a Low Voltage Current Amplifier Acoustic Device\",\"authors\":\"D. Sakyi-Arthur, S. Mensah, K. Adu, K. Dompreh, R. Edziah, N. G. Mensah, C. Jebuni-Adanu\",\"doi\":\"10.4236/wjcmp.2020.101002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustoelectric effect (AE) in a non-degenerate fluorinated single walled carbon nanotube (FSWCNT) semiconductor was carried out using a tractable analytical approach in the hypersound regime , where q is the acoustic wavenumber and is the electron mean-free path. In the presence of an external electric field, a strong nonlinear dependence of the normalized AE current density , on ( is the electron drift velocity and is the speed of sound in the medium) was observed and depends on the acoustic wave frequency, , wavenumber q, temperature T and the electron-phonon interactions parameter, . When , decreases to a resonance minimum and increases again, where the FSWCNT is said to be amplifying the current. Conversely, when , rises to a maximum and starts to decrease, similar to the observed behaviour in negative differential conductivity which is a consequence of Bragg’s reflection at the band edges at T=300K. However, FSWCNT will offer the potential for room temperature application as an acoustic switch or transistor and also as a material for ultrasound current source density imaging (UCSDI) and AE hydrophone devices in biomedical engineering. Moreover, our results prove the feasibility of implementing chip-scale non-reciprocal acoustic devices in an FSWCNT platform through acoustoelectric amplification.\",\"PeriodicalId\":308307,\"journal\":{\"name\":\"World Journal of Condensed Matter Physics\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Condensed Matter Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/wjcmp.2020.101002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Condensed Matter Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/wjcmp.2020.101002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semiconductor Fluorinated Carbon Nanotube as a Low Voltage Current Amplifier Acoustic Device
Acoustoelectric effect (AE) in a non-degenerate fluorinated single walled carbon nanotube (FSWCNT) semiconductor was carried out using a tractable analytical approach in the hypersound regime , where q is the acoustic wavenumber and is the electron mean-free path. In the presence of an external electric field, a strong nonlinear dependence of the normalized AE current density , on ( is the electron drift velocity and is the speed of sound in the medium) was observed and depends on the acoustic wave frequency, , wavenumber q, temperature T and the electron-phonon interactions parameter, . When , decreases to a resonance minimum and increases again, where the FSWCNT is said to be amplifying the current. Conversely, when , rises to a maximum and starts to decrease, similar to the observed behaviour in negative differential conductivity which is a consequence of Bragg’s reflection at the band edges at T=300K. However, FSWCNT will offer the potential for room temperature application as an acoustic switch or transistor and also as a material for ultrasound current source density imaging (UCSDI) and AE hydrophone devices in biomedical engineering. Moreover, our results prove the feasibility of implementing chip-scale non-reciprocal acoustic devices in an FSWCNT platform through acoustoelectric amplification.