基于电导的突触输入的Hodgkin和Huxley模型动力学

Priyanka Bajaj, A. Garg
{"title":"基于电导的突触输入的Hodgkin和Huxley模型动力学","authors":"Priyanka Bajaj, A. Garg","doi":"10.1109/IJCNN.2013.6706900","DOIUrl":null,"url":null,"abstract":"The original Hodgkin and Huxley equations are landmark equations explaining the generation of action potential in a biological neuron. Moreover, many studies have been done on the Hodgkin and Huxley model with constant injected current. Here we present an Extended Hodgkin and Huxley model with conductance based excitatory and inhibitory synaptic inputs. It is asserted that the Hodgkin and Huxley model remains robust with the all kinds of synaptic inputs. Moreover, this model is more tractable to a biological neuron.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamics of Hodgkin and Huxley model with conductance based synaptic input\",\"authors\":\"Priyanka Bajaj, A. Garg\",\"doi\":\"10.1109/IJCNN.2013.6706900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The original Hodgkin and Huxley equations are landmark equations explaining the generation of action potential in a biological neuron. Moreover, many studies have been done on the Hodgkin and Huxley model with constant injected current. Here we present an Extended Hodgkin and Huxley model with conductance based excitatory and inhibitory synaptic inputs. It is asserted that the Hodgkin and Huxley model remains robust with the all kinds of synaptic inputs. Moreover, this model is more tractable to a biological neuron.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6706900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最初的霍奇金和赫胥黎方程是解释生物神经元中动作电位产生的里程碑式方程。此外,对恒注入电流的Hodgkin和Huxley模型也做了很多研究。在这里,我们提出了一个基于电导的兴奋性和抑制性突触输入的扩展霍奇金和赫胥黎模型。认为霍奇金和赫胥黎模型对各种突触输入仍然具有鲁棒性。此外,该模型对生物神经元更易于处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of Hodgkin and Huxley model with conductance based synaptic input
The original Hodgkin and Huxley equations are landmark equations explaining the generation of action potential in a biological neuron. Moreover, many studies have been done on the Hodgkin and Huxley model with constant injected current. Here we present an Extended Hodgkin and Huxley model with conductance based excitatory and inhibitory synaptic inputs. It is asserted that the Hodgkin and Huxley model remains robust with the all kinds of synaptic inputs. Moreover, this model is more tractable to a biological neuron.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信