函数级数展开的函数网络建模方法

Qifang Luo, Yongquan Zhou, Xiuxi Wei
{"title":"函数级数展开的函数网络建模方法","authors":"Qifang Luo, Yongquan Zhou, Xiuxi Wei","doi":"10.1109/ICICISYS.2009.5357924","DOIUrl":null,"url":null,"abstract":"In this paper, a novel function series expansion method based on functional network model is proposed, and a functional network model for functions in several variables series expansion and learning algorithm are given, the learning of parameters of the functional networks is carried out by the solving linear equations. The simulation results show that the proposed approach is more efficient and feasible in function series expansion. By this algorithm, we only need the sample space of the original functions. So this algorithm has the value of application in industries.","PeriodicalId":206575,"journal":{"name":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A functional network modeling approach for function series expansion\",\"authors\":\"Qifang Luo, Yongquan Zhou, Xiuxi Wei\",\"doi\":\"10.1109/ICICISYS.2009.5357924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel function series expansion method based on functional network model is proposed, and a functional network model for functions in several variables series expansion and learning algorithm are given, the learning of parameters of the functional networks is carried out by the solving linear equations. The simulation results show that the proposed approach is more efficient and feasible in function series expansion. By this algorithm, we only need the sample space of the original functions. So this algorithm has the value of application in industries.\",\"PeriodicalId\":206575,\"journal\":{\"name\":\"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICISYS.2009.5357924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2009.5357924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于泛函网络模型的函数级数展开方法,给出了多变量函数级数展开的泛函网络模型和学习算法,通过求解线性方程实现了函数网络参数的学习。仿真结果表明,该方法在函数级数展开中具有较高的效率和可行性。通过该算法,我们只需要原始函数的样本空间。因此,该算法具有一定的工业应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A functional network modeling approach for function series expansion
In this paper, a novel function series expansion method based on functional network model is proposed, and a functional network model for functions in several variables series expansion and learning algorithm are given, the learning of parameters of the functional networks is carried out by the solving linear equations. The simulation results show that the proposed approach is more efficient and feasible in function series expansion. By this algorithm, we only need the sample space of the original functions. So this algorithm has the value of application in industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信