面对共信道干扰的多用户蜂窝网络保密中断分析

Yuan Jiang, Jia Zhu, Yulong Zou
{"title":"面对共信道干扰的多用户蜂窝网络保密中断分析","authors":"Yuan Jiang, Jia Zhu, Yulong Zou","doi":"10.1109/ICCI-CC.2015.7259422","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the physical-layer security of a multi-user cellular network in the presence of an eavesdropper, which is made up of multiple users communicating with a base station while the eavesdropper may intercept the communications from users to the base station (BS). Considering that multiple users are available in cellular network, we present three multi-user scheduling schemes, namely the round-robin scheduling scheme, the suboptimal and optimal user scheduling schemes to improve the security of communication (from users to BS) against the eavesdropping attack. In the suboptimal scheduling, we only need to assume that the channel state information (CSI) of the main link spanning from users to BS are known. In contrast to the suboptimal scheduling, the optimal scheduling is designed by assuming the CSI of the main link and wiretap link (spanning from users to the eavesdropper) that are available. We obtain the calculus form of the secrecy outage probability to analyze the secrecy diversity performance. Secrecy diversity analysis is carried out, which shows that the round-robin always achieves only one diversity order, whereas the suboptimal and optimal user scheduling schemes achieve the full diversity order. In addition, the results of the secrecy outage show that the optimal scheduling has the best performance and the round-robin performs the worst in terms of defending against the eavesdropping attack. Lastly, as the number of users increases, both the secrecy outage probabilities of the suboptimal and optimal scheduling schemes have a significant secrecy performance improvement.","PeriodicalId":328695,"journal":{"name":"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Secrecy outage analysis of multi-user cellular networks in the face of cochannel interference\",\"authors\":\"Yuan Jiang, Jia Zhu, Yulong Zou\",\"doi\":\"10.1109/ICCI-CC.2015.7259422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore the physical-layer security of a multi-user cellular network in the presence of an eavesdropper, which is made up of multiple users communicating with a base station while the eavesdropper may intercept the communications from users to the base station (BS). Considering that multiple users are available in cellular network, we present three multi-user scheduling schemes, namely the round-robin scheduling scheme, the suboptimal and optimal user scheduling schemes to improve the security of communication (from users to BS) against the eavesdropping attack. In the suboptimal scheduling, we only need to assume that the channel state information (CSI) of the main link spanning from users to BS are known. In contrast to the suboptimal scheduling, the optimal scheduling is designed by assuming the CSI of the main link and wiretap link (spanning from users to the eavesdropper) that are available. We obtain the calculus form of the secrecy outage probability to analyze the secrecy diversity performance. Secrecy diversity analysis is carried out, which shows that the round-robin always achieves only one diversity order, whereas the suboptimal and optimal user scheduling schemes achieve the full diversity order. In addition, the results of the secrecy outage show that the optimal scheduling has the best performance and the round-robin performs the worst in terms of defending against the eavesdropping attack. Lastly, as the number of users increases, both the secrecy outage probabilities of the suboptimal and optimal scheduling schemes have a significant secrecy performance improvement.\",\"PeriodicalId\":328695,\"journal\":{\"name\":\"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI-CC.2015.7259422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2015.7259422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文探讨了窃听者存在时多用户蜂窝网络的物理层安全问题。窃听者由多个用户组成,与基站通信,窃听者可能会拦截用户与基站的通信。针对蜂窝网络中存在多用户的情况,提出了三种多用户调度方案,即轮循调度方案、次优调度方案和最优调度方案,以提高从用户到BS的通信安全性,防止窃听攻击。在次优调度中,我们只需要假设从用户到BS的主链路的信道状态信息(CSI)是已知的。与次优调度相比,最优调度是通过假设主链路和窃听链路(从用户到窃听者)可用的CSI来设计的。得到了保密中断概率的微积分形式,分析了保密分集性能。进行了保密分集分析,结果表明,轮询调度总是只实现一个分集顺序,而次优和最优用户调度方案实现全分集顺序。此外,保密中断的结果表明,在防御窃听攻击方面,最优调度的性能最好,而轮询调度的性能最差。最后,随着用户数量的增加,次优调度方案和最优调度方案的保密中断概率都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secrecy outage analysis of multi-user cellular networks in the face of cochannel interference
In this paper, we explore the physical-layer security of a multi-user cellular network in the presence of an eavesdropper, which is made up of multiple users communicating with a base station while the eavesdropper may intercept the communications from users to the base station (BS). Considering that multiple users are available in cellular network, we present three multi-user scheduling schemes, namely the round-robin scheduling scheme, the suboptimal and optimal user scheduling schemes to improve the security of communication (from users to BS) against the eavesdropping attack. In the suboptimal scheduling, we only need to assume that the channel state information (CSI) of the main link spanning from users to BS are known. In contrast to the suboptimal scheduling, the optimal scheduling is designed by assuming the CSI of the main link and wiretap link (spanning from users to the eavesdropper) that are available. We obtain the calculus form of the secrecy outage probability to analyze the secrecy diversity performance. Secrecy diversity analysis is carried out, which shows that the round-robin always achieves only one diversity order, whereas the suboptimal and optimal user scheduling schemes achieve the full diversity order. In addition, the results of the secrecy outage show that the optimal scheduling has the best performance and the round-robin performs the worst in terms of defending against the eavesdropping attack. Lastly, as the number of users increases, both the secrecy outage probabilities of the suboptimal and optimal scheduling schemes have a significant secrecy performance improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信