超越点击-查看:交互式可视化数据管理方法的比较研究

Lorenna Christ'na Nascimento, Rodolfo P. Chagas, Marcos Lage, Daniel de Oliveira
{"title":"超越点击-查看:交互式可视化数据管理方法的比较研究","authors":"Lorenna Christ'na Nascimento, Rodolfo P. Chagas, Marcos Lage, Daniel de Oliveira","doi":"10.5753/jidm.2022.2513","DOIUrl":null,"url":null,"abstract":"Visual analytics solutions have been growing in popularity in recent years, not only for showing final results but also for assisting in interactive analysis and decision-making. Analysis of a large amount of data requires flexible exploration and visualizations. However, queries that span geographical regions over time slices are expensive to compute, which turns it challenging to accomplish interactive speeds for huge data sets. Such systems require efficient data availability, so that response time does not interfere with the user’s ability to observe and analyze. Simultaneously, researches in the database domain have proposed solutions that can be used to support visualization systems. This article presents a comparative study of data management approaches to support interactive visualizations. The chosen data management solutions are (i) Apache Drill (a Polystore system), (ii) Apache Spark (a big data framework), (iii) Elasticsearch (a search engine), (iv) MonetDB (a column-oriented DBMS), and (v) PostgreSQL (a relational DBMS). To evaluate the performance of each solution, we selected a list of spatiotemporal queries among multiple queries submitted by users in a visual analytics system for rainfall data analysis named TEMPO. The results of this study show that Apache Spark and MonetDB present the best performance for the selected queries.","PeriodicalId":301338,"journal":{"name":"J. Inf. Data Manag.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond Click-and-View: a Comparative Study of Data Management Approaches for Interactive Visualization\",\"authors\":\"Lorenna Christ'na Nascimento, Rodolfo P. Chagas, Marcos Lage, Daniel de Oliveira\",\"doi\":\"10.5753/jidm.2022.2513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual analytics solutions have been growing in popularity in recent years, not only for showing final results but also for assisting in interactive analysis and decision-making. Analysis of a large amount of data requires flexible exploration and visualizations. However, queries that span geographical regions over time slices are expensive to compute, which turns it challenging to accomplish interactive speeds for huge data sets. Such systems require efficient data availability, so that response time does not interfere with the user’s ability to observe and analyze. Simultaneously, researches in the database domain have proposed solutions that can be used to support visualization systems. This article presents a comparative study of data management approaches to support interactive visualizations. The chosen data management solutions are (i) Apache Drill (a Polystore system), (ii) Apache Spark (a big data framework), (iii) Elasticsearch (a search engine), (iv) MonetDB (a column-oriented DBMS), and (v) PostgreSQL (a relational DBMS). To evaluate the performance of each solution, we selected a list of spatiotemporal queries among multiple queries submitted by users in a visual analytics system for rainfall data analysis named TEMPO. The results of this study show that Apache Spark and MonetDB present the best performance for the selected queries.\",\"PeriodicalId\":301338,\"journal\":{\"name\":\"J. Inf. Data Manag.\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Data Manag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/jidm.2022.2513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Data Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/jidm.2022.2513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,可视化分析解决方案越来越受欢迎,不仅用于显示最终结果,还用于辅助交互式分析和决策。对大量数据的分析需要灵活的探索和可视化。然而,跨越时间片的地理区域的查询的计算成本很高,这使得实现大型数据集的交互速度变得非常困难。这样的系统需要有效的数据可用性,以便响应时间不会干扰用户观察和分析的能力。同时,数据库领域的研究也提出了支持可视化系统的解决方案。本文对支持交互式可视化的数据管理方法进行了比较研究。选择的数据管理解决方案是(i) Apache Drill(一个Polystore系统),(ii) Apache Spark(一个大数据框架),(iii) Elasticsearch(一个搜索引擎),(iv) MonetDB(一个面向列的DBMS),以及(v) PostgreSQL(一个关系DBMS)。为了评估每个解决方案的性能,我们在一个名为TEMPO的降雨数据可视化分析系统中,从用户提交的多个查询中选择了一个时空查询列表。这项研究的结果表明,Apache Spark和MonetDB为所选查询提供了最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond Click-and-View: a Comparative Study of Data Management Approaches for Interactive Visualization
Visual analytics solutions have been growing in popularity in recent years, not only for showing final results but also for assisting in interactive analysis and decision-making. Analysis of a large amount of data requires flexible exploration and visualizations. However, queries that span geographical regions over time slices are expensive to compute, which turns it challenging to accomplish interactive speeds for huge data sets. Such systems require efficient data availability, so that response time does not interfere with the user’s ability to observe and analyze. Simultaneously, researches in the database domain have proposed solutions that can be used to support visualization systems. This article presents a comparative study of data management approaches to support interactive visualizations. The chosen data management solutions are (i) Apache Drill (a Polystore system), (ii) Apache Spark (a big data framework), (iii) Elasticsearch (a search engine), (iv) MonetDB (a column-oriented DBMS), and (v) PostgreSQL (a relational DBMS). To evaluate the performance of each solution, we selected a list of spatiotemporal queries among multiple queries submitted by users in a visual analytics system for rainfall data analysis named TEMPO. The results of this study show that Apache Spark and MonetDB present the best performance for the selected queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信